

Third Preparatory Stage

First term (2017-2018)

Prepared By /

$$
\mathcal{M r} / \text { Sherif zaiton }
$$

(1) The equation of the straight line which is parallel to X-axis and pass through the point ($-2,3$).

The equation of the straight line : $\because y=m x+c$, the straight line parallel to $X-$ axis then $m=0$

$$
y=\mathrm{c} \quad \text { from the point }(-2,3), \mathrm{c}=3 \quad \text {, the equation is } \therefore \mathrm{y}=3
$$

(2) If $\overleftrightarrow{\mathrm{AB}} / / \overleftrightarrow{\mathbf{C D}}$ and the slope of $\overleftrightarrow{\mathbf{C D}}=\frac{2}{3}$ then the slope of $\overleftrightarrow{\mathrm{AB}}=\frac{2}{3}$
$\because \overleftrightarrow{\mathbf{A B}} / / \overleftrightarrow{\mathbf{C D}}, \ldots$ The slope of $\overleftrightarrow{\mathrm{AB}}=$ the slope of $\overleftrightarrow{\mathrm{CD}}$
(3) If $\overleftrightarrow{\mathbf{A B}} \perp \overleftrightarrow{\mathbf{C D}}$ and the slope of $\overleftrightarrow{\mathbf{C D}}=\frac{2}{3}$ then the slope of $\overleftrightarrow{\mathbf{A B}}=-\frac{3}{2}$
$\because \overleftrightarrow{\mathrm{AB}} \perp \stackrel{\mathrm{CD}}{ }$, \therefore The slope of $\overleftrightarrow{\mathrm{AB}} \times$ the slope of $\overleftrightarrow{\mathrm{CD}}=-1$
(4) The slope of the straight line whose equation $2 x-3 y+5=0$ is
\because The slope $=-\frac{\text { The coefficient of } x}{\text { The coefficient of } y}=-\frac{2}{-3}=\frac{2}{3}$
(5) If the two straight lines $2 x+b y+3=0$ and $3 x-y+2=0$ are perpendicular then $b=$
\because The two straight lines Perpendicular $:-\frac{2}{b} \times-\frac{3}{-1}=-1 \quad,,-\frac{6}{b}=-1, \quad b=6$
(6) If the two straight lines $K x-2 y+3=0,6 x+3 y-5=0$ parallel , then $K=$ \qquad
\because The two straight lines parallel $\quad \therefore \frac{-K}{-2}=$
$-\frac{6}{3}, \cdots K=-4$
(7) The slope of the perpendicular line to the line passes through the two points $(2,6),(-4,1)=\ldots \ldots$
\because The slope $=\frac{\text { difference of } y \text { co-ordinates }}{\text { difference of } x \text { co-ordinates }}=\frac{6-1}{2-(-1)}=\frac{5}{3}$
\therefore The slope of the perpendicular line $=\frac{-3}{5}$
(8) The equation of the straight line whose slope $=1$ and passes through the origin point is

The equation is $y=m x+c$ and the point $(0,0)$ satisfies it and $m=1$ then $y=x$ or $y-x=0$
(9) The slope of the straight line which is parallel to the straight line which passes through the two points $(3,1),(5,-1)=\ldots \ldots \ldots \ldots$.

The slope $=\frac{\text { difference of } y \text { co-ordinates }}{\text { difference of } x \text { co-ordinates }}=\frac{1-(-1)}{3-5}=\frac{2}{-2}=-1$
(10) The equation of the straight line which passes through the origin point and perpendicular to the straight line $y=2 x$ is $\ldots \ldots . . \because$ The slope of the straight line $=\frac{2}{1}$ then \therefore the slope of perpendicular $=-\frac{1}{2}$ \therefore The equation $\mathrm{y}=\mathrm{mx}, \not, \mathrm{y}=-\frac{1}{2} \mathrm{x}$ then $2 \mathrm{y}+\mathrm{x}=0$
(11) If the straight line $y=x \sin 30^{\circ}+c:$ passes through $(4,6)$ then $c=$ \qquad ,$\because 6=4 \sin 30^{\circ}+c$
Leyan Series in Mathematics
Third preparatory Stage
(12) The straight line passes through the two points $(1, y),(3,4)$, its slope is $\tan 45^{\circ}$, then $y=\ldots \ldots$

The slope $=\frac{\text { difference of } y \text { co-ordinates }}{\text { difference of } x \text { co-ordinates }}=\frac{y-4}{1-3}=\tan 45^{\circ}, \not, \frac{y-4}{-2}=1 \quad, y-4=-2, y=2$
(13) If the two equations of the two straight lines L_{1}, L_{2} respectively are $2 x-3 y+a=0$,
$3 x+b y-6=0$, Find
(1) the value of b when $L_{1} / / L_{2}$
(2) the value of b when $L_{1} \perp L_{2}$
(3) if the point (1,3) lies on L_{1}, then find the value of a .
(1) when $L_{1} / / L_{2}$ then $m_{1}=m_{2}$

$$
\frac{-2}{-3}=\frac{-3}{b}
$$

$2 \mathbf{b}=\mathbf{- 9}, \mathrm{b}=4.5$
(2) when $L_{1} \perp L_{2}$ then $m_{1} \times m_{2}=-1$

$$
\frac{-2}{-3} \times \frac{-3}{b}=-1
$$

$$
b=2
$$

(3) $(1,3) \in L_{1}$

2(1) $-3(3)+a=0$
$2-9+\mathbf{a}=\mathbf{0}, \mathbf{a}=7$
(14) Find the equation of the straight line passes through the two points $(2,3),(-3,2)$

The slope $=\frac{\text { difference of } y \text { co-ordinates }}{\text { difference of } x \text { co-ordinates }}=\frac{3-2}{2-(-3)}=\frac{1}{5}$

Another solution

The equation when the straight line $\in(2,3) \quad$ The equation when the straight line $\in(-3,2)$

$$
y=m x+c
$$

$$
\mathbf{y}=\mathbf{m x}+\mathbf{c}
$$

$y=\frac{1}{5} x+c \quad$ when it satisfies (2,3)

$$
3==\frac{2}{5}+c, y=\frac{13}{5}
$$

\therefore The equation : $\mathrm{y}=\frac{1}{5} \mathrm{x}+\frac{3}{5}$
$2==\frac{-3}{5}+c \quad, \quad c=\frac{13}{5}$
\therefore The equation : $y=\frac{1}{5} x+\frac{13}{5}$
(15) $\overline{A B}$ is a diameter of circle Mif $B(8,11), M(5,7)$, then Find (1) the coordinates of A.
(2) The length of the radius of the circle (3) The equation of the perpendicular straight line to AB from the point B.
(1)The coordinates of A if M is a center of the circle then M is the midpoint of diameter $\overline{A B}, A(x, y)$ $(5,7)=\left(\frac{x+8}{2}, \frac{y+11}{2}\right)$ Then $x+8=10 \quad, \quad x=2$ and $y+11=14 \quad \ldots, y=3 \quad A(2,3)$
(2) The length of the radius $=$ The distance $\overline{\mathbf{A M}}=$ The distance $\overline{\mathrm{AM}}=\frac{\text { The distance } \overline{A B}}{2}$

The distance $\overline{\mathrm{AM}}=\sqrt{(2-5)^{2}+(3-7)^{2}}=5$ units
(3) The slope of $\overleftrightarrow{A B}=\frac{\text { difference of } y \text { co-ordinates }}{\text { difference of } x \text { co-ordinates }}=\frac{3-11}{2-8}=\frac{-8}{-6}=\frac{4}{3}$, the slope of perpendicular $=\frac{-3}{4}$ The equation $y=m x+c$ satisfying at $B(8,11)$ then $y=\frac{-3}{4} x+c \quad$ at $(8,11)$ $11=\frac{-3}{4}(8)+\mathbf{c} \quad$ then $\mathrm{c}=17 \quad$,",, $\quad \mathrm{y}=\frac{-3}{4} \mathrm{x}+17$
Leyan Series in Mathematics

Leyan Series in Mathematics
Mr / Sherif Zaiton
(16) A straight line, its slope $=\frac{1}{2}$, intersects a positive part of $y-$ axis of length two units, find
(1) the equation of this straight line . (2) its intersection point with \mathbf{y}-axis .
\because The equation $y=m x+c$, where m is a slope and c is the intersect part of $y-a x i s$.
$\therefore y=\frac{1}{2} x+2$ by direct substitution, (2) the point of intersection with $\mathbf{y}-\operatorname{axis}$ at $\mathbf{x}=0, y=2,(0,2)$
(17) Find the equation of the straight line which passes through the point (1,6) and the midpoint of AB where A (1, -2), B (3, - 4) .

The midpoint of $\overline{\mathrm{AB}}=\left(\frac{1+3}{2}, \frac{-2-4}{2}\right)=(2,-3)$

Another solution

The slope $=\frac{6-(-3)}{1-2}=\frac{9}{-1}=-9$
$y=m x+c$ at $(1,6)$
$y=-9 x+c, \ldots, 6=-9(1)+c$
$\mathrm{c}=15$, y $=-9 \mathrm{x}+15$

$$
\begin{aligned}
& y=m x+c \text { at }(2,-3) \\
& y=-9 x+c,-3=-9(2)+c \\
& c=15 \quad, \quad y=-9 x+15
\end{aligned}
$$

(18) If the straight line L_{1} passes through the Two points $\left.\notin 3,1\right),(2, k)$, and the straight line L_{2} makes with the positive direction with x-axis an angle of measure 45 Find the value of K if :

The slope of $L_{1}=\frac{\text { difference of } y \text { co-ordinates }}{\text { difference of } x \text { co-ordinates }}=\frac{1-K}{3-2}=\frac{1-K}{1}=1-K=m_{1}$
The slope of $\mathrm{L}_{2}=\operatorname{Tan} \theta=\operatorname{Tan} 45^{\circ}=1=m$
(1) $\mathbf{L}_{1} / / \mathbf{L}_{2}$ Then $\mathrm{m}_{1}=\mathrm{m}_{2}$
$\mathbf{1}-\mathrm{K}=1 \quad$, $\mathrm{K}=\mathbf{0}$
(2) $L_{1} \perp L_{2}$ then $m_{1} \times m_{2}=-1$
(19) Find the value of K if the points $A(5,-5), B(-1, K), C(15,15)$ are the vertices of right angled triangle at B.
$\because \mathrm{ABC}$ is a right angled triangle at $\mathrm{B} \overleftrightarrow{\mathbf{A B}} \perp \overleftrightarrow{\mathbf{B C}}$
The slope of $\overleftrightarrow{\mathrm{AB}} \times$ The slope of $\mathbf{B C}=-1$
The slope of $\overrightarrow{A B}=\frac{K-(-5)}{-1-5}=\frac{K+5}{-6} \quad$, The slope of $\overleftrightarrow{B C}=\frac{K-15}{-1-15}=\frac{K-15}{-16}$
$\frac{K+5}{-6} \times \frac{K-15}{-16}=-1 \quad$,", $k^{2}-10 k-75=-96 \quad$, $k^{2}-10 k+21=0$
$(\mathbf{K}-\mathbf{3})(\mathbf{K}-\mathbf{7})=\mathbf{0} \quad$ then $k-3=0, \ldots, k=3 \quad$ or $k-7=0 \quad, k=7$
(20) If the points $A(0,1), B(a, 3)$, and $C(2,5)$ are collinear find the value of a.

The slope of $\overleftrightarrow{A B}=$ The slope of $\overleftrightarrow{A C}$

$$
\frac{3-1}{a-0}=\frac{5-1}{2-0} \quad,,, \frac{2}{a}=\frac{4}{2} \quad,,,, \quad 2 a=2
$$

$$
a=1
$$

