The magnetic effect of electric current

منتدي روضة العلوم الطبيعية للثانوية

INTRODUCTION:

(1) The magnet: "It is a mean to produce a magnetic force".

(2) Properties of the magnet:

- a- It attracts the iron fillings.
- b- If it is suspended freely to move in a horizontal plane.

It takes the N - S direction.

c- if it divided into two halves, it forms two magnets

(3) The magnetic field (flux):

"It is the space surrounding the magnet in which its magnetic effect can be detected". It consists of imaginative lines

(4) The magnetic flux line:

"It is the path of a freely moving north pole placed in the magnetic field".

١

(5) The neutral point:

It is the point at which the resultant field forces = zero" the two fields must be : Equal - opposite - on the same straight line.

(6) The uniform field:

This field is characterized by having parallel Lines, in the same direction, its intensity in any Point is equal.

(7) Forms of some magn Fields:

(8) Properties of magn. flux lines

- 1- they are closed lines from N--> S out side the magnet and from S---> N inside the magnet.
- 2- they do not intersect each other.

- 3- their direction can be detected by the direction of N-pole magnetic needle of a compass.
- 4- the parallel lines of the same direction repel each other
- 5- Their density increases at the poles of the magnet indicating the strength of the magn. Field.

(9) The magnetic flux at point : "f"

"It is the No. of magn. lines passing normally on the area surrounding this point".

The magnetic flux density at a point: "B"

"It is the No. of magn. lines pass normally on the unit area surrounding this point".

Notes:

- (1) Magnetic density = magnetic induction = B
- (2) 1 Tesla = Webber / m^2
- (3) If the area is not normal to the magn. Lines, B is resulted:

٣

