Chapter (2) Quanfitative chemistry

Lesson (1)
Mole and chemical equation


```
Chemital Eguaston
```

When oxygen gas reacts with magnesium, magnesium oxide is formed. Such Reactions are described by balanced equations known as "chemical equations"

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O} 2(\mathrm{~g})------>42 \mathrm{MgO}(\mathrm{~s})
$$

The chemical equation of magnesium reaction with oxygen

Chemical equation properties

1- It is composed of the chemical formulas and symbols of the reactants and products

2- Both sides of the equation (the reactants and products) are separated by an arrow describing the conditions and direction of the reaction (in the previous equation, the triangle on the arrow describes heat)

3- It describes the quantity of reactants and products (the no. of molecules)
4- It describes the state of reactants and products - solids are denoted by (s), liquids (l), gas (g) and aqueous solutions (aq.) as shown in the previous equation

Chemical equations should be balanced, which means that the no. of molecules of reactants should equal the no. of molecules of products. This is known as "law of mass conservation"

Chemical equation: The representation of chemical reaction using chemical symbols, formulas of reactants and products, and the description conditions of reaction.

Molecule: is the smallest particle in a chemical element or compound that has the chemical properties of that element or compound and exists alone Atom: The smallest building unit of matter which takes part in chemical reaction

How to balance a chemical equation: to balance a chemical equation, we should make sure that the right side of the equation has the same atoms of the left side of it

Example:-

Balance the following equations:-

$$
\mathrm{l}-\mathrm{Al}+\mathrm{O}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}
$$

$2-\mathrm{NaNO}_{3} \Delta \rightarrow \mathrm{NaNO}_{2}+\mathrm{O}_{2}$

Solution:-

1-we find that there are 3 oxygen atoms on the right side of the equation, while there are only 2 on the left side of it. To balance the no. of oxygen atoms on both sides, we should increase the no. of oxygen atoms on both of them to 6 (6 is the least common multiple of 2 and 3)

$$
\mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

There are four aluminium atoms on the right side of the equation, while there's a single atom on the left side. To balance the no. of aluminium atoms on both sides, we increase the no. of atoms in left size to 4 aluminium atoms

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

2- The no. of oxygen atoms on the right side of the equation is 3 , while that on the right side of the equation is 4, to balance the no. of oxygen atoms, we increase the no. of oxygen atoms on both sides to 6

$$
\mathrm{NaNO}_{3} \Delta \rightarrow \mathrm{NaNO}_{2}+\mathrm{O}_{2}
$$

The Mole

We studied before that every element has its own mass number (the number of protons and neutrons in the nucleus of the element atom)
Thus, if we want to calculate the atomic mass of an element, we only calculate the mass of its nucleus (because the mass of electrons is too small if compared to those of protons and neutrons)

Atomic masses are measured by a unit called "Atomic unit" or a.m.u.

Atomic unit (a.m.u) $=1.66 \times 10_{-24} \mathrm{gm}=1.66 \times 10-27$ kilogram
If the mass no. of oxygen is 12, so its atomic mass equals 12 a.m.u and so on.
"Mole" (the abbreviation of molecule) is the measuring unit of the quantity of matter

How to calculate the mole of elements

If the atomic mass of oxygen is 16 a.m.u, so one mole of oxygen equals 16 grams If the atomic mass of nitrogen is 14 a.m.u, so one mole of nitrogen equals 14 grams
If the atomic mass of carbon is 12 a.m.u, so one mole of carbon equals 12 grams

Calculate the mole of helium (if its atomic mass equals 2 grams)

If we want to know the mass of a molecule of a compound, we add the masses of the atoms forming it, which is known as "Molecular mass"

> Molecular mass: The sum of the masses of the atoms forming molecules of a compound

Example:-

The molecular mass of carbon dioxide molecule (CO2) is the sum of the masses of 2 oxygen atoms and 1 carbon atom.
if the atomic mass of oxygen equals 16 a.m.u, and that of carbon atom equals 12 a.m.u

Therefore, the molecular mass of CO2 molecule $=12+16+16=44$ a.m.u

N.B: mole of carbon dioxide gas $=44 \mathbf{g m}$

Calculate the mole of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, if the atomic mass of oxygen equals 16 a.m.u, and that of hydrogen equals 1 a.m.u

Mole and the mass of matter

We calculated before that mole of carbon dioxide equals 44 gm , so when we use 44 gm of carbon, it means that we used one mole of it

How to know the no. of moles in matter

The mass of matter (in grams)

The mass of one mole ($\mathrm{gm} / \mathrm{mole}$)
The no. of carbon dioxide moles in 440 grams of it equals 440 (the mass of matter) divided by 44 (the mass of one mole) $=10$ moles

Every substance has different molar mass due to the difference of the molecular structure and atomic masses of elements

Note: The mole of diatomic (nonmetal) elements are calculated in a different way (if they are pure elements)
The mole of oxygen gas (in the form of molecules) $O_{2}=16+16=32 \mathrm{gm}$ The mole of oxygen gas (in the form of atoms) $=16 \mathrm{gm}$

There are some elements whose molar masses change by the change of their physical state (solid, liquid, gas) for example:-
1- Phosphorus: Phosphorus molecule in gaseous state consists of 4 Phosphorus atoms $\left(P_{4}\right)$ while its molecule in solid state consists of only 1 atom
2- Sulphur: Sulphur molecule in gaseous state is octatomic (consists of 8 atoms), while its molecule in solid state consists of only 1 atom
So, we can say that in some elements, the mole in solid state is different from that in gas state

The importance of mole

It helps us calculate the amounts of substances required for chemical reaction

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O} 2(\mathrm{~g})------\gg 42 \mathrm{MgO}(\mathrm{~s})
$$

From the previous reaction, we deduce that the ratio between magnesium and oxygen equals 2:1, so the reaction needs 2 magnesium moles and 1 oxygen mole (the no. of moles of magnesium should be double that of oxygen)

Limiting reactant

We said that chemical reactions require certain amounts of reactants to get the required amount of products But if the amount of a certain reactant is smaller
than the required amount, it's completely consumed. Such small amounts of reactants are known as "Limiting reactant"

Limiting reactant: The substance that is totally consumed when chemical reaction is complete due to its lack
Mole and Ayogadro's number

Scientist Amedeo Avogadro discovered that the no. of matter units (atoms,molecules,ions...etc) in all moles of all elements is constant. Later, that no. was calculated to be $\underline{\mathbf{6 . 0 2} \times 10_{23}}$ and called "Avogadro's number"

Avogadro's number: A constant number representing the no. of atoms, molecules or ions in one mole, it equals $6.02 \times 10_{23}$ matter unit/mole

A mole of water (44 gram of it) has $6.02 \times 10_{23}$ molecules and so on

Ionic reactions

Some physical processes, as the dissociation of some molecules into ions when they dissolve in water, are described by "ionic reactions"

When dissolving sodium chloride in water, we describe it by the following ionic reaction:-

$$
\operatorname{Nacl}(s)---------\boldsymbol{N a}+(a q)+\boldsymbol{C l}_{-}(a q)
$$

The previous reaction states that a solid mole of NaCl produces a mole of positive sodium ions ($6.02 \times 10_{23}$ ions) and a mole of negative chlorine ions (6.02 $\times 10_{23}$ ions) when it dissolves in water

When sulphuric acid reacts with sodium hydroxide forming sodium sulphate and water (Neutralization reaction), we describe the reaction as the following:-

$$
2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H} 2 \mathrm{SO} 4(\mathrm{aq})------\mathrm{Na} 2 \mathrm{SO} 4(\mathrm{aq})+2 \mathrm{H} 2 \mathrm{O}(\mathrm{l})
$$

In neutralization reactions, we don't need to write the signs of ions in their ionic reactions.

When adding potassium chromate $\left(\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{7}\right)$ to silver nitrate solution $\left(\mathrm{AgNO}_{3}\right)$, insoluble silver chromate $\left(\mathrm{Ag}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right.$) is formed as a red ppt.

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7(a q)}+2 \mathrm{AgNO}_{3(a q)} \longrightarrow \longrightarrow \mathrm{KNO}_{3(a q)}+\mathrm{Ag}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}
$$

Example (1)

Calculate the no. of carbon molecules in 48 grams of carbon ($C=12$)

Solution:-

The mole of carbon $=12+12=24 \mathrm{~g}$ (diatomic element)
Therefore, the no. of moles $=48 / 24=2$ moles
The no. of molecules $=2 \times 6.02 \times 10_{23}=12.04 \times 10_{23}$ atoms

Example(2)

Calculate the no. of carbon atoms in 50 grams of calcium carbonate CaCO_{3}
($C a=40, C=12, O=16$)

Solution:-

One mole of $\mathrm{CaCO}_{3}=40+12+(16 x 3)=100 \mathrm{gm}$
Therefore, 100 gm (one mole) of CaCO_{3} contains one mole of carbon
50 gm of $\mathrm{CaCO}_{3}=0.5$ mole of $\mathrm{CaCO}_{3}=0.5$ mole of carbon
The no. of carbon atoms $=0.5 \times 6.02 \times 10_{23}=3.01 \times 10_{23}$ atoms .
The mols and ho wolume of yas

It's known that the volume of gas is the volume of its container, but scientists discovered that moles of all gases occupy certain volume of 22.4 litres if thev are put in certain conditions called "Standard temperature and pressure (STP)"

STP: The presence of matter in temperature of 0 degree Celsius (273 Kelvin) and pressure of $760 \mathrm{~mm} . \mathrm{Hg}$ (1 atomic pressure)

This means that a mole of methane gas $\left(\mathrm{CH}_{4}\right)$ occupies volume of 22.4 litres (if it's in (STP), and the same to a mole of Hydrogen gas $\left(\mathrm{H}_{2}\right)$ and any gas

Volume of gas (in litres) $=22.4 \times$ no. of moles

Example (1)

Calculate the volume of 64 gm of oxygen gas in STP conditions $(O=16)$

Solution:-

If one mole of oxygen $=16+16=32 \mathrm{gm}$ (diatomic element)
The no. of moles $=64 / 32=2$ moles
The volume of oxygen gas $=22.4 x$ the no. of moles $=22.4 x 2=44.8 \mathrm{~L}$

Example:-

Calculate the volume of oxygen required for 90 g of water when reacting with hydrogen in $\operatorname{STP}(O=16, H=1)$

Solution:-

$$
\begin{aligned}
& 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})-\mathrm{-}-\mathrm{-}-\mathrm{C}}^{2 \mathrm{H}_{2} \mathrm{O}} \\
& 2 \mathrm{~mol} 1 \mathrm{~mol} 2 \mathrm{~mol}
\end{aligned}
$$

One mole of water $=16+1 x 2=18$ grams
If one mole of oxygen produces 2 moles of water (36 grams of water)
Therefore, The no. of moles in oxygen $=90 / 36=2.5 \mathrm{~mol}$
The volume of oxygen $=22.4 \times 2.5=50 \mathrm{~L}$

Some laws on gases and moles

Gay-Lussac's law: The volumes of reactant and product gases have certain volumes expressed in whole numbers

In other words, The volumes of reactant gases and the products are inversely proportional, which means that:-

1- If one volume of hydrogen reacts with one volume of chlorine, one volume of hydrogen chloride gas is formed

$$
\mathrm{H} 2(\mathrm{~g})+\mathrm{Cl} 2(\mathrm{~g})------\rightarrow 2 \mathrm{HCl}(\mathrm{~g})
$$

2- If one volume of nitrogen reacts with 3 volumes of hydrogen, 2 volumes of ammonia gas are formed

$$
\text { N2 }(\mathrm{g})+3 H 2(\mathrm{~g})-----\rightarrow 2 N H 3(\mathrm{~g})
$$

Avogadro's law: Equal volumes of gases in the same conditions of pressure and temperature have the same no. of molecules

Avogadro stated that any gas of volume 22.4 L in the standard conditions of pressure and temperature (STP) has 6.02×1023 molecules

At the end of this lesson, we conclude that mole has three definitions:-
1- The mass of molecules, ions and atoms in grams
2- A constant no. of molecules, atoms, ions or formula units whose value equals $6.02 \times 10_{23}$
3- The mass of 22.4 L in standard conditions of pressure and temperature
Mole: The quantity of matter which contains Avogadro no. of ions, molecules or ions

Lesson (2)
 The calculation of chemical reactions

Weight percent

The weight percent of a substance $=\frac{100 x \text { the mass (or the mole) the substance }}{\text { the mass of (or the mole) the compound }}$

Example

Calculate the weight percent of oxygen in carbon dioxide gas ($C=12, O=16$)

Solution

The mole of carbon dioxide $\mathrm{CO}_{2}=12+16+16=44 \mathrm{gm}$
The mass of oxygen atoms forming CO_{2} mole $=16+16=32 \mathrm{gm}$
The weight percent of oxygen $=(32 / 44) \times 100=72.7 \%$

Example (2)

Calculate the mass of iron in 1000 kg of hematite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ (if the weight percent of Fe equals 58\%)

Solution:-

The mass of iron $=58 \% \times 1000=580 \mathrm{~kg}$

Example (3)

Calculate the weight percent of iron in ferric oxide ($\mathrm{Fe}_{2} \mathrm{O} 3$) $\quad(\mathrm{Fe}=56, \mathrm{O}=16)$

Solution:-

Mole of ferric oxide $=56+56+16+16+16=160 \mathrm{gm}$
The mass of iron atoms forming one mole of ferric oxide $=56+56=112 \mathrm{gm}$
Weight percent of iron $=(112 / 160) \times 100=70 \%$

Example (4)

Calculate the no. of carbon moles in an organic compound containing only hydrogen and carbon atoms. The weight percent of carbon $=85.71 \%$ and the molar mass of the compound $=28 \mathrm{gm} \quad(C=12)$

Solution:-

The mass of carbon in this compound $=85.71 \% \times 28=24 \mathrm{gm}$
The molar mass of carbon $=12 \mathrm{gm}$
The no. of carbon moles $=24 / 12=2$ moles

Calculating chemical formula

Chemical formulas have two main kinds:-
1- Empirical formula
2- Molecular formula
Empirical formula: The formula that describe the simplest ratio between the atoms of the elements forming the compound molecules

Example:-

The formula of Propylene is C 3 H 6 , if we divided both numbers by 3, the empirical formula will be CH2 (empirical formula describes only the ratio between the components of molecules)

How to calculate chemical formula

We can calculate them using the weight percents of the elements forming the compounds

Example:-

Calculate the empirical formula of a compound containing 25.9% nitrogen and 74.1% oxygen $\quad(O=16, N=14)$

Solution:-

The no. of nitrogen moles $=$ weight percent $/$ molar mass $=25.9 / 14=1.85 \mathrm{~mol}$.
The no. of oxygen moles $=$ weight percent $/$ molar mass $=74.1 / 16=4.63 \mathrm{~mol}$.
Nitrogen: Oxygen

$$
\begin{gathered}
\frac{1.85}{1.85}: \frac{4.63}{1.85} \\
1:
\end{gathered}
$$

So, the ratio between Nitrogen and oxygen $=1: 2.5 \quad$ (we multiply both sides by 2 because decimals such as " 2.5 " cannot be used in chemical formulas) $=2: 5$

The chemical formula $=\mathrm{N}_{2} \mathrm{O}_{5}$

How to know the no. of atoms in a compound (Molecular formula)

The no. chemical formula units = The molar mass of compound / the molar mass of chemical formula units

Molecular formula: The symbolic formula of the molecule of a compound which describes the kind and the actual no. of the atoms forming that molecule

Example:-

Acetic acid of weight 60 gm contains 40\% carbon, 6.67% hydrogen and oxygen 53.33\%
($C=12, O=16, H=1$). Calculate its molecular formula

Solution:-

Oxygen	ydroge	Carbon
53.33	6.67	40
16	1	12
3.33	6.67	3.33
1	2	1

The empirical formula: $\mathrm{CH}_{2} \mathrm{O}$
The molar mass of Acetic acid $=12+1+1+16=30 \mathrm{gm}$
The no. of units $=60 / 30=2$ units
The molecular formula $=\mathrm{CH}_{2} \mathrm{O} \times 2=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$

Actual and theoretical yields

When a chemical reaction occurs to get certain amount of chemical substances, the chemical equation of the reaction determines theoretically the amount of the products. But practically, the amount of the products will be less than the theoretical amount because:-

1- The products may be volatile and parts of them spread in the air
2- Parts of the products may stick to the glass containers walls
3- The reactants may be impure
4- side reactions may occur
Practical yield: The amount of substances we get practically from the reaction

Theoretic yield: The amount of substances we expect to get form the reaction

The percentage yield (the percentage of practical yield)

$100 \times$ Practical yield
Theoretical yield

Example:-

39.4 gm of solid barium sulphate BaSO_{4} precipitated when 40 gm of barium chloride solution BaCl_{2} reacted with potassium sulphate. Calculate the percentage yield of barium sulphate

Solution

$$
2 \mathrm{BaCl}_{2}+2 \mathrm{KSO}_{4} \rightarrow 2 \mathrm{BaSO}_{4}+2 \mathrm{KCl}
$$

Mole of $\mathrm{BaCl}_{2}=137+35.5+35.5=208 \mathrm{gm}$
Mole of $\mathrm{BaSO}_{4}=137+32+16+16+16+16=233 \mathrm{gm}$
The no. of BaCl_{2} moles $=$ mass of substance $/$ molar mass $=40 / 208=0.19 \mathrm{~mol}$ 2 moles of $\mathrm{BaCl}_{2} \rightarrow 2$ moles of BaSO_{4}
0.19 mole of $\mathrm{BaCl}_{2} \rightarrow 0.19 \mathrm{~mol}$ of BaSO_{4}

The mass of $\mathrm{BaSO}_{4}=0.19 \times$ molar mass $=0.19 \times 233=44.8 \mathrm{gm}$
The practical yield $=39.4 \mathrm{gm}$

The theoretical yield $=44.8 \mathrm{gm}$
The percentage yield $=$ the practical yield $/$ the theoretical yield $x 100$

$$
=39.4 / 44.8 \times 100=87.95 \%
$$

Definitions of lesson (1)

1- Chemical equation: The representation of chemical reaction using chemical symbols.. formulas of reactants and products, and the conditions of it 2- Avogadro's number: The no. of ions, molecules and atoms in one mole of matter ($6.02 \times 10_{23}$ matter unit/mole)
3- Mole: The mass of atoms, molecules, or formula units of matter in grams which contain Avogadro's number of them
4- Avogadro's law: Equal volumes of gases in the same conditions of pressure and temperature have the same no. of molecules
5-Gay-Lussac's law: The volumes of reactant and product gases have certain volumes expressed in whole number
6- Empirical formula: The formula that describe the simplest ratio between the atoms of the elements forming the compound molecules
7- Molecular formula: The symbolic formula of the molecule of a compound which describes the kind and the actual no. of the atoms forming that molecule
8- Practical yield: The amount of substances we get practically from the reaction
9- Theoretical yield: The amount of substances we expect to get form the reaction
Ratonalles (bive reasons for)

1- The volume of 26 gm Acetylene gas $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ is equal to the volume of 2 g of hydrogen gas in (STP) conditions
Because the mole of Acetylene molecule equals 26 gm , and the mole of hydrogen molecule equals $2 g$. By applying Avogadro's law, we'll find that the volumes of both gases are equal in (STP) conditions (because they contain the same no. of moles)

2- The molar mass of phosphorus differs according to its physical state

Because in gaseous state, phosphorus molecule consists of 4 atoms, while in solid state, It consists of 1 atom. So, the molar mass of gaseous phosphorus is different from that of solid phosphorus

3- Litre of oxygen gas has the same no. of molecules in a litre of chlorine gas in STP conditions

Because according to Avogadro's law, equal volumes of gases in STP conditions have the same no. of molecules

4- the no. of molecules in 9 gm of water $\mathrm{H}_{2} \mathrm{O}$ is equal to that in 39 gm of

 Aromatic Benzene ($\mathrm{C}_{2} \mathrm{H}_{2}$)Because the mass of one mole of water $=9 \mathrm{gm}$, whereas the mass of one mole of Aromatic Benzene $=39 \mathrm{gm}$, so they have the same no. of molecules (Avogadro's number) because they have the same no. of moles

5- Chemical equations should be balanced

In order to get the required amounts of products

6- Gas should be in STP conditions in order to calculate its volume using its molar mass

Because in STP conditions, one mole of any gas occupies volume of 22.4 litres
7- The molar mass of sulphur in solid state is different from that in gas state
Because a molecule of gaseous sulphur contains 8 atoms of sulphur, while that of solid sulphur contains only 1 atom. So, They have different molar masses

8- The actual (practical) yield is always less than the theoretical yield

Because the reactants may be impure, side reactions may occur, the products may be volatile and spread in the air, or they can stick to the glass containers walls

Chemical reactions

1- The reaction of sodium chloride with silver nitrates forming a white ppt. of silver chloride and sodium nitrates

$$
\mathrm{NaCl}(a q)+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{AgCl}
$$

2- The reaction of Nitric acid with potassium hydroxide solution forming potassium nitrate solution and water

$$
\mathrm{HNO}_{3(a q)}+\mathrm{KOH}_{(a q)} \rightarrow \mathrm{KNO}_{2(a q)}+\mathrm{H}_{2} \mathrm{O}(q)
$$

3- The reaction of potassium chromate with silver nitrate solution forming insoluble silver chromate (red ppt.) and potassium nitrite

$$
\mathrm{K} 2 \mathrm{Cr} 2 \mathrm{O} 7(\mathrm{aq})+2 \mathrm{AgNO} 3(\mathrm{aq})--------->2 \mathrm{KNO}(\mathrm{aq})+\mathrm{Ag} 2 \mathrm{Cr} 2 \mathrm{O} 7
$$

4- The reaction of sulphuric acid with sodium hydroxide forming sodium sulphate and water (Neutralization reaction),

$$
2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H} 2 \mathrm{SO} 4(\mathrm{aq})------\mathrm{Na} 2 \mathrm{SO} 4(\mathrm{aq})+2 \mathrm{H} 2 \mathrm{O}(\mathrm{l})
$$

Exercises on lesson (1)

1- Choose the correct answer

1- When 50 gm of CaCO_{3} decomposes thermally, \qquad ($C a=40, C=12, O=16$)
A- 28
B- 16
C- 76
D- 35

2- The volume of hydrogen required to form 11.2 L of water is.
A- $22.4 L$
B-11.2 L
C- 68.2 L
D- 44.8 L

3- One atomic unit equals \qquad Gm
A-1.66x10-24
B- $2.73 \times 10-23$
C-1.75x10-15
D-3.65x10-13

4- The unit used in IS for measuring the quantity of matter is.....
A-Mole
B- Joule
C-Calenda
D- Kelvin

5- The mass of 44.8L of ammonia gas (NH_{3}) in STP conditions is \qquad ($N=14, H=1$)
A- 0.5
B-2
C- 17
D- 34

6- If an amount of sodium has $3.01 \times 10_{23}$ atoms, so its mass is \qquad
A-11.5
B- 0.5
C-23
D-46

7- The chemical equation should be balanced according to \qquad
A-Avogadro's law B-Gay-Lussac's law $\quad C$-law of mass conservation
D - Law of energy conservation

8- 0.5 mole of carbon dioxide gas (CO_{2}) weighs.... gm ($\mathrm{C}=12, \mathrm{O}=16$)
A- 22
B- 44
C-66
D-88

9- When 64 gm of oxygen reacts with hydrogen, litres of water vapour $\left(\mathrm{H}_{2} \mathrm{O}\right)$ are formed
A- 11.2
B- 22.4
C- 44.8
D- 89.6

10- The no. of moles in 36 g of water equals. \qquad
A- 1
B-2
C- 3
D-4

11- The no. of molecules in 128g of sulphur dioxide (SO_{2}) equals...... ($\mathrm{S}=32$, $O=16$)
A- 2
B- $6.02 \times 10_{23}$
C- 3.01×1023
D-12.04x1023
12- The no. of sodium ions resulted from the dissolution of 40 g of sodium hydroxide (NaOH) equals.....($\mathrm{Na}=23, \mathrm{O}=16, \mathrm{H}=1$)
A-2 $B-6.02 \times 10_{23} \quad C-3.01 \times 10_{23} \quad D-12.04 \times 10_{23}$

13- The volume of $4 g$ of hydrogen in STP conditions equals ...

A- 11.2
B- 22.4
C- 44.8
D- 89.6

14- The volumes of reactant gases are inversely proportional to those of products according to..........
A- Avogadro's law $\quad B$-Gay-Lussac's law $\quad C$-law of mass conservation
D - Law of energy conservation

2-Solve the following problems

1- Find the no. of sodium ions resulted from the dissolution of 117 g of sodium chloride (NaCl) in water $\quad(\mathrm{Na}=23, \mathrm{Cl}=35.5$)

2-26.5g of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ reacted with an abundant amount of hydrochloric acid in STP conditions ($\mathrm{Na}=23, \mathrm{C}=12, \mathrm{O}=16$) find:-
a- The no. of water molecules
b - The volume of carbon dioxide gas
3- Calculate the no. of moles in 144gm. of carbon ($C=12$)

4- Calculate the mass of 2.4 moles of calcium carbonate (CaCO_{3})

$$
(C a=40, C=12, O=16)
$$

5- Calculate the volume of 56 g of nitrogen gas in STP conditions $\quad(N=14)$

6- 23 g of sodium (Na) reacted with water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ forming sodium hydroxide (NaOH) and hydrogen gas ($\mathrm{Na}=23, O=16, H=1$), Find:-
a - The no. of sodium ions resulted from the reaction
b - The volume of evolving hydrogen gas
7- Calculate the molar mass of gaseous phosphorus in STP conditions, and the no. of atoms in one mole of it.

3-Balance the following equations

$1-\mathrm{N}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \Delta \mathrm{NH}_{3(\mathrm{~g})}$
2- $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~s})} \Delta \rightarrow \mathrm{CuO}_{(\mathrm{s})}+\mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
3-3 $\mathrm{Al}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \Delta \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}$

The Answers

1-Choose

1-28gm
\rightarrow The molar mass of calcium carbonate $=40+12+16+16+16=100 \mathrm{gm}$
The molar mass of calcium oxide $(\mathrm{CaO})=40+16=56$
The no. of moles $=$ the mass of the sample/ the molar mass $=50 / 100=0.5 \mathrm{~mol}$
1 mole of calcium carbonate $\rightarrow 1$ mole of calcium oxide CaO 0.5 mole of calcium carbonate $\rightarrow 0.5$ mole of calcium oxide CaO The mass of calcium oxide $=0.5 \times$ molar mass $=0.5 \times 56=28 \mathrm{~g}$

2-11.2 L

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

2 moles of hydrogen $\rightarrow 2$ moles of water
The volume of hydrogen gas $=$ the volume of water
The volume of water $=11.2 \mathrm{~L}$
The volume of hydrogen gas $=11.2 \mathrm{~L}$
3-1.66x10-24
4- Mole

5-34g
\rightarrow The molar mass of ammonia gas $=14+1+1+1=17 \mathrm{gm}$
The no. of moles $=$ the volume of gas in STP $/ 22.4=44.8 / 22.4=2$ moles
The mass of 44.8 L of ammonia gas $=$ no. moles x molar mass $=2 \times 17=34 \mathrm{~g}$

6-11.5gm

\rightarrow the molar mass of sodium $=23 \mathrm{gm}$
The no. of moles $=$ no. of atoms $/$ Avogadro's number $=0.5 \mathrm{~mol}$.
The mass of sodium $=0.5 \times 23=11.5 \mathrm{gm}$

7- law of mass conservation
8-22g
\rightarrow The molar mass of carbon dioxide gas $=16+16+12=44 g$
The mass of carbon dioxide $=0.5 \times 44=22 g$
9- 89.6 L

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

Molar mass of oxygen $\mathrm{O}_{2}=16+16=32 \mathrm{gm}$
The no. of moles $=64 / 32=2$ moles 1 mole of oxygen $\rightarrow 2$ moles of water
2 moles of oxygen $\rightarrow 4$ moles of water
The volume of water vapour in $S T P=22.4 x$ the no. of moles $=22.4 \times 4=89.6 L$

$$
\rightarrow \text { The molar mass of sulphur oxide }=32+16+16=64 \mathrm{~g}
$$

The no. of moles $=128 / 64=2$ moles
The no. of molecules $=$ no. of moles x Avogadro's no. $=12.04 \times 1023$ molecules
12-6.02x1023 ions

One mole of sodium hydroxide $=23+16+1=40 g$
One mole of $\mathrm{NaOH} \rightarrow$ one mole of sodium ions
The no. of ions $=6.02 \times 10_{23}$ ions

13-44.8 L
\rightarrow The molar mass of hydrogen gas $=2 g$
The no. of moles $=4 / 2=2$ moles
The volume of gas in $S T P=2 \times 22.4=44.8 \mathrm{~L}$
14- Gay-Lussac's law

Solve the following problems

1- The molar mass of sodium chloride $=23+35.5=58.5$
The no. of moles in 117 gm of $\mathrm{NaCl}=117 / 58.5=2$ moles
One mole of $\mathrm{NaCl} \rightarrow$ One mole of sodium positive ions
Two moles of $\mathrm{NaCl} \rightarrow$ Two moles of sodium positive ions
The no. of sodium ions $=2 \times 6.02 \times 10_{23}=\underline{\mathbf{1 2 . 0 4 x 1 0}} \mathbf{2 3}$ ions
2- $\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
a- The no. of water molecules
The molar mass of sodium carbonate $=23+23+16+16+16+12=106 \mathrm{~g}$
The no. of moles in $26.5 \mathrm{~g}=26.5 / 106=0.25$ mole
One mole of $\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow$ one mole of water
0.25 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 0.25$ mole of water

The no. of water molecules $=0.25 \times 6.02 \times 10_{23}=\underline{1.505 \times 1023}$ molecules

b- The volume of CO_{2} gas in STP conditions

One mole of $\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow$ one mole of carbon dioxide 0.25 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 0.25$ mole of carbon dioxide The volume of the gas $=0.25 \times 22.4=\underline{\mathbf{5 . 6}}$ Litres

3- The molar mass of carbon element $=12+12=24$
(N.B: the molar masses of diatomic nonmetal elements are calculated this way)

The no. of moles in 144 gm of carbon $=144 / 24=6$ moles

4- The molar mass of $\mathrm{CaCO}_{3}=40+12+16+16+16=100 \mathrm{~g}$
The mass of 2.4 moles $=100 \times 2.4=240 \mathrm{~g}$

5- The molar mass of nitrogen gas $=14+14=28 \mathrm{gm}$
The no. of moles in $56 \mathrm{~g}=56 / 28=2$ moles
The volume of nitrogen gas in STP conditions $=22.4 \times 2=44.8 \mathrm{~L}$
$6-2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+2 \mathrm{H}_{2} \mathrm{O}$

a- the no. of sodium ions

The molar mass of sodium $=23 \mathrm{~g}$
One mole of sodium \rightarrow one mole of sodium hydroxide solution \rightarrow one mole of sodium ions
The no. of ions $=6.02 \times 10_{23}$ ions

b- The volume of hydrogen gas in STP conditions

One mole of sodium \rightarrow one mole of hydrogen gas
The volume of hydrogen gas in STP conditions $=22.4 \mathrm{~L}$
7- Gaseous phosphorus molecule consists of 4 atoms
The molar mass of gaseous phosphorus $=4 \times 31=124 \mathrm{gm}$
The no. of atoms in one mole $=$ Avogadro's no. x the no. of atoms per molecule

$$
=6.02 \times 10_{23} \times 4=24.08 \times 10_{23} \text { atoms }
$$

Balance the following equations

$1-\mathrm{N}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \Delta \mathrm{NH}_{3(\mathrm{~g})}$
The no. of hydrogen atoms on the right side of the equation is 3, while that on the left side of it is 2. To balance the no. of hydrogen atoms on both sides, we increase it on both of them to 6

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \Delta 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

2- $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~s})} \Delta \rightarrow \mathrm{CuO}_{(\mathrm{s})}+\mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
There are 2 nitrogen atoms on the left side of the equation, while there is only 1 nitrogen atom on the right side of it. To balance the no. of nitrogen atoms, we increase the no. of nitrogen atoms on the right side to 2

$$
\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~s})} \Delta \rightarrow \mathrm{CuO}_{(\mathrm{s})}+2 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

$3-\mathrm{Al}+3 \mathrm{O}_{2} \rightarrow \mathrm{Al}_{2}$
we find that there are 3 oxygen atoms on the right side of the equation, while there are only 2 on the left side of it. To balance the no. of oxygen atoms on both sides, we should increase the no. of oxygen atoms on both of them to 6 (6 is the least common multiple of 2 and 3)

$$
\mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

There are four aluminium atoms on the right side of the equation, while there's a single atom on the left size. To balance the no. of aluminium atoms on both sides, we increase the no. of atoms in left size to 4 aluminium atoms

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

Exercises on lesson (2)

1-Choose

1- The empirical formula of $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ is \qquad $A-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \quad B-\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O} \quad \mathrm{C}-\mathrm{CH}_{4} \mathrm{O}_{2} \quad D-\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{O}_{2}$

2- The no. of empirical formulas in $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$ is

A-1
B-2
C- 3
D-4

3- If the empirical formula of a compound is CH_{2} and its molar mass if 56g, its molecular formula is.....
A- $\mathrm{C}_{2} \mathrm{H}_{4}$
B- $\mathrm{C}_{4} \mathrm{H}_{8}$
C- $\mathrm{C}_{3} \mathrm{H}_{6}$
D- Cs H_{10}

4- If the molecular formula of Vitamin C is $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$, its empirical formula is.... $\mathrm{A}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3} \quad \mathrm{~B}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{6} \quad \mathrm{C}-\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3} \quad \mathrm{D}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$

5- The empirical formula $\mathrm{CH}_{2} \mathrm{O}$ describes......

$A-\mathrm{CH}_{3} \mathrm{COOH} \quad \mathrm{B}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad \mathrm{C}$ - $\mathrm{HCHO} \quad \mathrm{D}$ - All the previous answers

6- The hydrocarbon compound formed from the reaction of 0.1 mol. of carbon atoms with 0.4 mol. of hydrogen atoms is......
$\mathrm{A}-\mathrm{CH}_{4}$
B- $\mathrm{C}_{2} \mathrm{H}_{4}$
C- $\mathrm{C}_{4} \mathrm{H}_{8}$
D- $\mathrm{C}_{3} \mathrm{H}_{8}$

Write the scientific term

1- A method to describe chemical formula, the quantities of reactants and products, and the conditions for chemical reaction

2- The mass of atoms or molecules in grams
3- A constant no. of the ions, molecules or atoms in one mole of matter
4- A formula describes the actual no. of atoms in molecules
5- The amount of matter we get practically from the reaction
6- The sum of the atoms masses forming the molecule
7- The volumes of the reactant and products gases have certain ratios
8- The equals volume of gases in the same conditions of temperature and pressure have the same no. of molecules

9- A formula which describe the simplest ratios between the atoms forming molecules

10- The amount of reactants we expect to get from the reaction

Solve the following problems

1- Find the molecular formula of a compound containing 85.7% carbon and 14.3% hydrogen whose molar mass is $42 g$

2-130g of silver chloride (AgCl) precipitated when a mole of sodium chloride (NaCl) reacted with silver nitrates $\left(\mathrm{AgNO}_{3}\right)$, calculate the percentage yield (percentage of actual yield) $\quad(A g=108, N=14, C l=35.5, N a=23, O=16)$

3- Calculate the weight percent of iron in $\mathrm{FeCO}_{3} \quad(\mathrm{Fe}=56, \mathrm{C}=12, \mathrm{O}=16)$
4- Calculate the weight percent of the elements forming Glucose sugar $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

$$
(C=12, H=1, O=16)
$$

The Answers

1- Choose the correct answer

1- $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$

2- 2

3- $\mathrm{C}_{4} \mathrm{H}_{8}$
The molar mass of CH_{2} the empirical formula $=12+1+1=14 g$
The no. of units = molar mass of the compound / the molar mass of the empirical formula $=56 / 14=4$ units
The molecular formula $=4 x \mathrm{CH}_{2}=\mathrm{C}_{4} \mathrm{H}_{8}$

4- $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$

5- All the previous answers
6- CH_{4}

Write the scientific term

1- Chemical reaction
2- Mole
3- Avogadro's number
4- Molecular formula
5- Practical yield
6- Molecular mass
7- Gay-Lussac's law
8- Avogadro's law
9- Empirical formula
10- Theoretical formula

Solve the following problems

1 -

Hydrogen 14.3	Carbon 1	85.7
14.3	7.1416	
2	1	

The empirical formula: CH_{2}
The molar mass of the compound $=12+1+1+=14 \mathrm{gm}$
The no. of units $=42 / 14=3$ units
The molecular formula $=\mathrm{CH}_{2} \times 3=\mathrm{C}_{3} \mathrm{H}_{6}$
$2-\mathrm{NaCl}_{(a q)}+\mathrm{AgNO}_{3}($ aq $) \rightarrow \mathrm{NaNO}_{3}+\mathrm{AgCl}_{(s)}$
Mole of sodium chloride $=23+35.5=58.5$
Mole of silver chloride $=108+58.5=143.5$
The practical yield $=140 \mathrm{~g}$
The theoretical yield $=143.5 \mathrm{~g}$

The percentage yield $=140 / 143.5 \times 100=97.56 \%$

3- The molar mass of $\mathrm{FeCO}_{3}=56+12+16+16+16=116 g$
The mass of iron forming one mole of $\mathrm{FeCO}_{3}=56 \mathrm{~g}$
The weight percent $=56 / 116 \times 100=48.26 \%$

4- The molar mass of glucose $=12 x 6+12 x 1+16 x 6=72+12+96=180 g$
The mass of carbon $=12 x 6=72 \mathrm{~g}$
The mass of hydrogen $=12 x 1=12 \mathrm{~g}$
The mass of oxygen $=16 x 6=96 \mathrm{~g}$
The weight percent of carbon $=72 / 180 \times 100=40 \%$
The weight percent of hydrogen $=12 / 180 \times 100=6.7 \%$
The weight percent of oxygen $=96 / 180 \times 100=53.3 \%$

