UNIT [11: Real Numbers \{R\}

Revision

1) Set of Numbers:
a. The Set of Counting Numbers
$\mathbf{C}=\{1,2,3, \ldots\}=\mathbf{N}^{+}$
b. The Set of Natural Numbers
$\mathbf{N}=\{0,1,2,3, \ldots\}=\mathbf{Z}^{+} \cup\{0\}$
c. The Set of Integers
$\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
d. The Set of Positive Integers
$\mathbf{Z}^{+}=\{1,2,3, \ldots\}=$ Counting No.
e. The Set of Negative Integers
$\mathbf{Z}^{-}=\{-1,-2,-3, \ldots\}$.
f. The Set of Rational Numbers $Q=\{a / b: a, b \in b \neq 0\}$
g. $N \subset Z \subset Q$

The Standard form of a rational number is :

```
a }\times1\mp@subsup{0}{}{n}\mathrm{ where n }\in\textrm{z},1\leq|\textrm{a}|<1
```

2) Perfect Square rational Number: it is that positive number which can be written in the form of a square rational no. i.e. (rational no.)2 . Ex. (1, 4, 25, 9/16, $21 / 4 \ldots$...).
3) Perfect Cube rational Number: it is that number which can be written in the form of a cube rational no. i.e. (rational no.)3. Ex. (1, 8, -27, -216, 8/125, ...).

Lesson (1): the Cube root of a rational number

The cube root of the rational number a is that number whose cube is equal to a
2. The cube root for the rational number a is symbolized by $\sqrt[3]{\mathbf{a}}$
2. The cube root for a positive rational number is also positive Ex: $\sqrt[3]{127}=5$
a - The cube root for a negative rational number is also negative. Ex: $\sqrt[3]{-8}=-2$ why?
a. $\sqrt[3]{\text { zero }}=$ zero
a. $\sqrt[3]{a}=a$

Remark The perfect cube rational number has one cube root which is also a rational number, why?

Lesson (2): the Set of Irrational Number Q`

the following are examples to irrational numbers.
First : the square roots of the positive numbers which are not perfect squares
Ex $: \sqrt{2}, \sqrt{5},-\sqrt{6}, \sqrt{7}$
Second: the cube roots of those numbers that are not perfect cubes

Ex : $\sqrt[3]{4}, \sqrt[3]{-2}, \sqrt[3]{11}, \ldots$
Third: the pi π (the approximation ratio)
Where it is impossible to find any exact value for any of the previous number. why?

Lesson (3): Finding the Approximate value of an Irrational Number

Remark $\sqrt{2}$ is between $\sqrt{1}, \sqrt{4}$ i.e $1<\sqrt{2}<2$ i.e. $\sqrt{2}=1+$ a decimal fraction

Representing the irrational number on the number line.

How can the point represents $\sqrt{2}$ be located on the number

line?
If we draw the right triangle $A B C$ at B which is an isosceles triangle also.
where $A B=B C=$ one unit of length
Then $(A C)^{2}=(A B)^{2}+(B C)^{2}=1^{2}+1^{2}=2$
$\therefore A C=\sqrt{2}$ unit of length.

\bigcirc draw the number line and place the sharp point of the compasses at point O , then adjust the compasses to a length that is equal to $\overline{\mathrm{AC}}$ and draw an arc that intersects the number line on the right of o and at the point X, where that point represents $\sqrt{2}$

O Using the same length, we can label the point $X^{`}$ which represent $-\sqrt{2}$ where $X^{`}$ is on the left of the point o.

Solution

A $x^{2}=2$
$\therefore \mathrm{x}= \pm \sqrt{2}$ Solution set $=\{-\sqrt{2}, \sqrt{2}\}$
B $x^{3}=5$
$\therefore x=\sqrt[3]{5} \quad$ Solution set $=\{\sqrt[3]{5}\}$
C $\frac{4}{3} x^{2}=1$
$\therefore \frac{3}{4} \times \frac{4}{3} \mathrm{x}^{2}=\frac{3}{4} \times 1$
$x^{2}=\frac{3}{4}$
$\therefore x= \pm \sqrt{\frac{3}{4}}= \pm \frac{\sqrt{3}}{\sqrt{4}}= \pm \frac{\sqrt{3}}{2} \quad$ Solution set $=\left\{-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right\}$

Lesson (4): the Set of the Real number R

You have learned the set of rational numbers (Q), you have also found that there are other numbers that form the set of irrational number Q^{\prime} such as $\sqrt{2}, \sqrt[3]{2}, \pi, \ldots$ However, the union of these two sets forms a new set called the set of the real numbers, and it is denoted by the symbol R

$$
\mathrm{R}=\mathrm{Q} \cup \mathrm{Q}^{\prime}
$$

(2) Any natural, integer, rational or irrational number is a real number
(3) Every real number is represented by one point on the number line.

$$
N \subset Z \subset Q \subset R \quad \text { and } \text { so is } Q^{\prime} \subset R
$$

R

Remark
$\sqrt[3]{-1}=-1$ because $-1 \times-1 \times-1=-1$
While $\sqrt{-1} \notin R$ because there is no real number If multiplyed by it self, the product is $\mathbf{- 1}$.

Lesson (5): Ordering numbers at R

the set of real number is an ordered set.:
The properties of order:
(1) If x, y are two real numbers represented on the number line by the two points A, B respectively, the ordering relation can be one of the following three cases:

A is congruent to B so $x=y$

A follows B so $x>y$

A precedes B so $x<y$
(2) If x is a real number represented by the point A on the number line while O is the origin point which represents the zero, then the ordering relation can be one of the following three cases.

The set of the positive real numbers: $R^{+}=\{x: x \in R, x>0\}$
The set of the nagative real numbers: $R^{-}=\{x: x \in R, x<0\}$

$$
\mathbf{R}=\mathbf{R}^{+} \cup\{0\} \cup \mathbf{R}^{-}
$$

Remark : The set of non-negative real numbers $=R^{+} u\{0\}=\{x: x \geqslant 0, x \in R\}$ The set of the non-positive real numbers $=R^{-} \cup\{0\}=\{x: x \leqslant 0, x \in R\}$

Example:

Arrange the following numbers ascendingly $\sqrt{27},-\sqrt{45}, \sqrt{20}, 6,0, \sqrt[3]{-1}$
Solution
$6=\sqrt{36}, \sqrt[3]{-1}=-1=-\sqrt{1}$
The ascending order is from the smallest to the greatest.
$-\sqrt{45},-\sqrt{1}, 0, \sqrt{20}, \sqrt{27}, \sqrt{36}$
i.e. $-\sqrt{45}, \sqrt[3]{-1}, 0, \sqrt{20}, \sqrt{27}, 6$.

Lesson (6): Intervals

Interval is a subset of the set of real numbers

first: the limited intervals

If $a, b \in R, a<b$, then we can define each of:

The closed inteval
 [a,b]

$[a, b]=\{x: a \leqslant x \leqslant b, x \in R\}$
[a, b] C R in which the elements are a, b and all the real numbers between them.

When we draw that interval, we put a shaded circle at each of the two points a and b then, we shade that area between them on the number line.

The open interval

]a, b[
]a, $b[=\{x: a<x<b, x \in R\}$

]a, $b[c R$ in which the elements are all the real numbers between the two numbers a, b

When we draw that interval, we put an unshaded circle at each of the two points which represent the two numbers a and b then, we shade that area between them on the number line.

Half openor (half closed) intervals

Examples:

Represent each of the following intervals on the number line: $[-1,4],]-1,4[]-1,4,],\{-1,4\}$

Solution

Second: The unlimited intervals

You know that: If the number line of real numbers is expanded on its two direction, we get more positive real numbers at the right direction and more negative real number at the left direction such all those numbers are located on that line.

O The symbol (∞) is read (infinity) and it is more than any imagined real number, $\infty \notin R$
O The symbol ($-\infty$) is read (negative infinity) and it is less then any imagined real number, $-\infty \notin \mathrm{R}$

- The two symbols $\infty,-\infty$ can not be represented by any points on the number line and they are expansions to the number line at its two directions.

If a is a real number, then we can define the following unlimited intervals:

The interval $[a, \infty[$ The interval $]-\infty, a]$
$[a, \infty[=\{x: x \geqslant a, x \in R\}$

That interval represents the number a and all the real numbers which are more than a

That interval represents the number a and all the real number which are less than a.
the interval]a, ∞ [
$] a, \infty[=\{x: x>a, x \in R\}$

That interval represents all the real number which are more them a
the interval]-m, a[
$]-\infty, a[=\{x: x<a, x \in R\}$

that interval represents all the real numbers which are less than a

Remark : The set of real numbers (R) can be represented in the form of the interval] $-\infty$, ∞ [

The set of the positive real numbers $\left.\mathrm{R}^{+}=\right] 0, \infty[$
The set of the negative real numbers $\left.\mathrm{R}^{-}=\right]_{-\infty}$, $0[$
The set of non-negative real numbers $=[0, \infty[$
The set of non-positive real numbers $=]^{-\infty}, 0$]

Operations on intervals

Since all the intervals are subsets of the set of the real number R, The operations of union, intersection, difference and complement can be applied on the intervals. The graphical representation to the intervals on the number line contributes to determine and verify the result of any operation. This can be clarified from the following examples:

1) If $X=[-2,3], Y=[1,5[$, find the following using the number line:
(A) $X \cap Y$
B $\mathrm{X} \cup \mathrm{Y}$

Solution

$$
\text { A } X \cap Y=[-2,3] \cap[1,5[=[1,3]
$$

B $X \cup Y=[-2,3] \cup[1,5[=[-2,5[$
2. If $M=[2, \infty[, J=]-2,3[$, find the following using the number line:
(A) $\mathrm{M}-\mathrm{J}$
B $\mathrm{M} \cap \mathrm{J}$
D $J \cup\{2,3\}$
(E) M^{\prime}
C $\mathrm{M} \cup \mathrm{J}$
F J.

Solution
A $\mathrm{M}-\mathrm{J}=[2, \infty[-]-2,3[=[3, \infty[$
B $M \cap J=[2, \infty[\cap]-2,3[=[2,3[$
C $M u J=[2, \infty[\cup]-2,3[=]-2, \infty[$
D $J \cup\{2,3\}=]-2,3[\cup\{2,3\}=]-2,3]$
E $\left.M^{-}=\right]-\infty, 2[$
F $5=]-\infty,-2] \cup[3, \infty[$

1. Complete the following table as shown in the first example:
$\left.\begin{array}{|c|c|ccc|c|c|}\hline \text { Interval } & \begin{array}{c}\text { Representation by using the } \\ \text { descri.tion method }\end{array} & \begin{array}{c}\text { Graphical representation on the } \\ \text { number line }\end{array} \\ \hline[-1,2] & \{x:-1 \leqslant x \leqslant 2, x \in R\} & & -1 & 0 & 1 & 2\end{array}\right]$

Lesson (7): Operations on Real Numbers

First: The properties of adding the real numbers:

the closure property

If $a \in R, b \in R$ then $(a+b) \in R$
Par example : each of $2+3,1+\sqrt{2},-2+\sqrt{5}$ and $2+\sqrt[3]{3}$ are real numbers.

The commutative If $a \in R, b \in R$ then $a+b=b+a$ property

Par example : $2+\sqrt{3}=\sqrt{3}+2,3-\sqrt{5}=-\sqrt{5}+3$

$$
\begin{aligned}
& \text { The associative If } a \in R, b \in R, c \in R \text {, } \\
& \text { property } \\
& \text { then }(a+b)+c=a+(b+c)=a+b+c
\end{aligned}
$$

Par example : $(3+\sqrt{2})+5=3+(\sqrt{2}+5)$ associative property

$$
\begin{aligned}
& =3+(5+\sqrt{2}) \quad \text { commutative property } \\
& =3+5+\sqrt{2} \quad \text { associative property } \\
& =8+\sqrt{2}
\end{aligned}
$$

```
Zero is the additive neutral element: If \(a \in R\) then \(a+0=0+a=a\)
```

Par example : $\sqrt{5}+0=0+\sqrt{5}=\sqrt{5},-\sqrt[3]{4}+0=0+(-\sqrt[3]{4})=-\sqrt[3]{4}$

Each real number has an additive inverse
For a number $a \in \mathbf{R}$ there is $(-a) \in \mathbf{R}$
where $a+(-a)=(-a)+a=$ zero

Par example $\sqrt{3} \in R$, has additive inverse $(-\sqrt{3}) \in R$ where

$$
\sqrt{3}+(-\sqrt{3})=(-\sqrt{3})+\sqrt{3}=\text { zero. }
$$

Second: The properties of multiplying the real numbers

```
The closure property If a\inR,b\inR then a }\times\textrm{a
```

the set of real number is closed under the operation of multiplication.
i.e the product of multiplying every two real number is a real number.

Par example : $5 \times \sqrt{2}=5 \sqrt{2} \in \mathrm{R}, \sqrt{3} \times \sqrt{3}=3 \in \mathrm{R}$

$$
\begin{gathered}
-2 \times \sqrt[3]{5}=-2 \sqrt[3]{5} \in R, \frac{2}{3} \times \pi=\frac{2}{3} \pi \in R \\
2 \sqrt{3} \times \sqrt{3}=6 \in R, 2 \sqrt{3} \times 5=10 \sqrt{3} \in R
\end{gathered}
$$

Commutative property

Si $a \in R$ et $b \in R$, alors $a \star b=b \star a$

Par example : $\sqrt{2} \times 3=3 \times \sqrt{2}=3 \sqrt{2}$
The associative property
Si $a \in R, b \in R$ et $c \in R$, alors

$$
(a \star b) * c=a \star(b * c)=a * b * c
$$

Par example : $\sqrt{2} \times(5 \times \sqrt{2})=(\sqrt{2} \times 5) \times \sqrt{2}=(5 \times \sqrt{2}) \times \sqrt{2}$

$$
=5 \times \sqrt{2} \times \sqrt{2}=5 \times 2=10
$$

One is the multiplicative neutral

Si $a \in \mathbb{R}$, alors $a \star 1=1 \star a=a$

Par example : $2 \sqrt{5} \times 1=1 \times 2 \sqrt{5}=2 \sqrt{5}$

Every real number $\neq 0$ has a multiplicative inverse
Si $a \neq 0$
il existe un nombre réel $\frac{1}{a}$
où $\mathrm{a} \star \frac{1}{\mathrm{a}}=\frac{1}{\mathrm{a}} \star \mathrm{a}=1$ (l'élément neutre pour la multiplication)
Par example: the multiplicative inverse for $\frac{\sqrt{3}}{2}$ is $\frac{2}{\sqrt{3}}$

$$
\text { where } \frac{\sqrt{3}}{2} \times \frac{2}{\sqrt{3}}=\frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{2}=1
$$

Remark: $\frac{a}{b}=a \times \frac{1}{b}, \quad b \neq 0$
i.e. $\frac{a}{b}=a \times$ the multiplicative inverse of b.

Distribution of multiplication on addition

$$
\text { For any three real numbers } a, b, c \text {. }
$$

$$
\begin{aligned}
& a \times(b+c)=(a \times b)+(a \times c)=a b+a c \\
& (a+b) \times c=(a \times c)+(b \times c)=a c+b c
\end{aligned}
$$

2) Give an estimation to the result of $(3+\sqrt{5}) \times(1+\sqrt{8})$, then check your answer using the calculator.

Solution

First: The estimate of $\sqrt{5}$ is $2 \therefore(3+\sqrt{5})$ the estimate of $3+2=5$
the estimate of $\sqrt{8}$ is 3
$\therefore(1+\sqrt{8})$ the estimate of $1+3=4$
$\therefore(3+\sqrt{5})(1+\sqrt{8})$ the estimate of $5 \times 4=20$
Second: when we use the calculator to find $(3+\sqrt{5}) \times(1+\sqrt{8})$
We find that the result is 20.0459
Therefore, the estimate is reasonable.

Lesson (8): Operations on the square roots

If \mathbf{a}, \mathbf{b} are two non-negative real numbers, then

First: \square
For example : $\quad \sqrt{2} \times \sqrt{3}=\sqrt{2 \times 3}=\sqrt{6}$
Second: $\quad \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$ where $b \neq 0$

For example : $\quad \sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{\sqrt{9}}=\frac{1}{3} \sqrt{5}$

Third:

$$
\frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{a}}{\sqrt{b}} \times \frac{\sqrt{b}}{\sqrt{b}}=\frac{\sqrt{a b}}{b} b \neq 0
$$

For example : $\quad \frac{\sqrt{18}}{\sqrt{2}}=\sqrt{\frac{18}{2}}=\sqrt{9}=3$

The two conjugate numbers

If a and b are two positive rational numbers.

Then each of the two number $(\sqrt{a}+\sqrt{b}),(\sqrt{a}-\sqrt{b})$ is a conjugate to the other one. then, their sum is $=2 \sqrt{a}$ twice the first term and their product is $=(\sqrt{a}+\sqrt{b}),(\sqrt{a}-\sqrt{b})=(\sqrt{a})^{2}-(\sqrt{b})^{2}=a-b$
$=$ The square of the first term - The square of the second term

The product of two conjugates is always a rational number

If we have a real number whose denominator is written in the form $(\sqrt{a} \pm \sqrt{b})$, we should put it in the simplest form by multiplying both the numerator and denominator by the conjugate of the denominator.

$$
2 \text { Given } \mathrm{x}=\frac{4}{\sqrt{7}-\sqrt{3}}, \mathrm{y}=\sqrt{7}-\sqrt{3} \text {, }
$$

prove that x and y are conjugates, then find the values of: $x^{2}-2 x y+y^{2},(x-y)^{2}$. What do you observe?

Solution

$$
\begin{aligned}
x & =\frac{4}{\sqrt{7}-\sqrt{3}} \times \frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}+\sqrt{3}}=\frac{4(\sqrt{7}+\sqrt{3})}{7-3}=\sqrt{7}+\sqrt{3} \\
y & =\sqrt{7}-\sqrt{3} \therefore x, y(\text { two conjugate numbers }) \\
x^{2}-2 x y+y^{2} & =(\sqrt{7}+\sqrt{3})^{2}-2(\sqrt{7}+\sqrt{3})(\sqrt{7}-\sqrt{3})+(\sqrt{7}-\sqrt{3})^{2} \\
& =(7+2 \sqrt{21}+3)-2(7-3)+(7-2 \sqrt{21}+3) \\
& =10+2 \sqrt{21}-8+10-2 \sqrt{21} \\
& =12 \\
& =[(\sqrt{7}+\sqrt{3})-(\sqrt{7}-\sqrt{3})]^{2} \\
(x-y)^{2} & =[\sqrt{7}+\sqrt{3}-\sqrt{7}+\sqrt{3}]^{2}=(2 \sqrt{3})^{2} \\
& =4 \times 3=12
\end{aligned}
$$

Remark : $\quad x^{2}-2 x y+y^{2}=(x-y)^{2}$

Lesson (9): Operations on the Cube roots

For any two real numbers a, b :
(1)

$$
\sqrt[3]{a} \times \sqrt[3]{b}=\sqrt[3]{a \times b}
$$

For example: $\quad \sqrt[3]{5} \times \sqrt[3]{2}=\sqrt[3]{5 \times 2}=\sqrt[3]{10}$

$$
\sqrt[3]{3} \times \sqrt[3]{-4}=\sqrt[3]{3 \times-4}=\sqrt[3]{-12}
$$

(2)

$$
\sqrt[3]{a \times b}=\sqrt[3]{a} \times \sqrt[3]{b}
$$

For example: $\sqrt[3]{40}=\sqrt[3]{8 \times 5}=\sqrt[3]{8} \times \sqrt[3]{5}=2 \sqrt[3]{5}$

$$
\sqrt[3]{-128}=\sqrt[3]{-64 \times 2}=\sqrt[3]{-64} \times \sqrt[3]{2}=-4 \sqrt[3]{2}
$$

(3)

$$
\frac{\sqrt[3]{a}}{\sqrt[3]{b}}=\sqrt[3]{\frac{a}{b}} \text { where } b \neq 0, a, b \in R
$$

For example: $\quad \frac{\sqrt[3]{12}}{\sqrt[3]{3}}=\sqrt[3]{\frac{12}{3}}=\sqrt[3]{4}$
(4)

$$
\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}} \text { where } b \neq 0, a, b \in R
$$

For example: $\quad \sqrt[3]{\frac{3}{2}}=\frac{\sqrt[3]{3}}{\sqrt[3]{2}}$

Lesson (10): Applications on the Real Numbers

The circle:

Circumference of a circle $=2 \pi \mathrm{r}$ length unit

$$
\text { area of a circle }=\pi r^{2} \text { square unit }
$$

where r is the length of the radius in a circle, π is the (approximate ratio).

Examples

Find the circumference of acircle whose area is $38.5 \mathrm{~cm}^{2}\left(\pi=\frac{22}{7}\right)$

Solution

The area of the circle $=\pi \mathrm{r}^{2}$

$$
\begin{aligned}
& 38.5=\frac{22}{7} \mathrm{r}^{2} \quad \therefore \mathrm{r}^{2}=\frac{38.5 \times 7}{22}=\frac{49}{4} \\
& \therefore \mathrm{r}=\sqrt{\frac{49}{4}}=\frac{7}{2}=3.5 \mathrm{~cm}
\end{aligned}
$$

The cuboid

It is a body whose six faces are of a rectangular shape such that every two opposite faces are congruent.:
If the lengths of its edges were x, y, z, then:
The lateral area $=$ the perimeter of the base \times the height
The lateral area $=\mathbf{2}(x+y) \times z$ square unit

The lateral area $=$ the lateral area $+2 \times$ the area of the base
The total area $=\mathbf{2}(x y+y z+X z)$ square unit
The volume of the cuboid $=$ the area of the base \times the height
The volume of the cuboid $=x \times y \times z$ cubic unit

```
A special case: the cube
It is a cuboid whose edges are equal in length. If the length of one edge = L length
unit, then:
The area of each face = L' 2 square unit
```

 The lateral area of each face \(=4 \mathrm{~L}^{2}\) square unit
 The total area $=6 L^{2}$ square unit, the volume of the cube $=L^{3}$ cubic unit

Examples

Find the total area of a cube whose volume is $125 \mathrm{~cm}^{3}$

Solution

The volume of the cube $=\mathrm{L}^{3}$
$\therefore 125=\mathrm{L}^{3} \quad \therefore \mathrm{~L}=\sqrt[3]{125}=5 \mathrm{~cm}$

The total area $=6 L^{2}=6 \times(5)^{2}=150 \mathrm{~cm}^{2}$

The right circular cylinder :
It is a body that has two parallel congruent bases each is a circular shaped surface, while its lateral surface is a curved surface called cylindrical surface.
\bigcirc If $M, M^{`}$ are the bases of the cylinder, then $M M^{`}$ is the height of cylinder.

Let's think If $A \in$ the circle $M, B \in$ the circle M ',

$$
\overline{A B} / / \overline{M M^{-}}
$$

O Then, if we cut the lateral cylindrical surface at $A B$ and we stretch That surface, we get the surface of the rectangle A $B B^{\prime} A^{\prime}$
Then, $A B=$ height of cylinder, $A A^{\prime}=$ the perimeter of the base of the cylinder.

The area of the rectangle ABB' $A^{\prime}=$ the lateral area of the cylinder
The lateral area of the cylinder $=$ the perimeter of the base \times height $=2 \pi \mathrm{rh}$ (square unit) the total area of the cylinder = area of lateral surface + sum of the areas of the two bases

$$
=2 \pi r h+2 \pi r^{2}
$$

(square unit)
the volume of the cylinder $=$ base area \times height $=\pi r^{2} h$
(cubic unit)

The sphere:

It is a body of curved surface in which the points have the same distance (r) from a constant point inside it (the center of the sphere)..

If the sphere is cut by a plane passing by its center, then the resulted section is a circle whose center is the center of a sphere where its radius is the radius of a sphere (r).
Volume of the sphere $=\frac{4}{3} \pi r^{3} \quad$ cubic units.

area of the sphere $=4 \pi r^{2}$
square units.

Lesson (11): Solving Equations \& Inequalities of first Degree in one Variable in R

First: Solving Equations of First degree in one variable in R
We know that: The equation $3 X-2=4$ is called an equation of first degree where the exponent of the (unknown) variable X is 1 . To solve that equation in R
$3 x-2=4 \quad$ By adding 2 to the sides of the equation
$3 x=6$ (we can multiply by the multiplicative
inverse of the coefficient of X)
$\frac{1}{3} \times 3 x=\frac{1}{3} \times 6$
$\therefore \mathrm{x}=2$
ie the solution set \{ 2 \}
This solution can be graphed on the number line as shown in the figure opposite .

Examples
Find the solution set of the equation $\sqrt{3} x-1=2$, in \mathbf{R}, then graph the solution on the number line.

Solution

$$
\begin{array}{ll}
\sqrt{3} \mathrm{x}-1=2 & \therefore \sqrt{3} \mathrm{x}=3 \\
\therefore \mathrm{x}=\frac{3}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} & \therefore \mathrm{x}=\sqrt{3} \in \mathbf{R}
\end{array}
$$

The solution set is $\{\sqrt{3}\}$

This solution can be graphed on the number line as shown in the figure opposite .

Second: Solving Inequalities of the First degree in one Variable in R, graphing the solution on the number line:

The following properties are used to solve the inequality in R . The solution set is written in the form of an interval
If $A, B \times C$ were real number where $A<B$, then:
(1) $\mathrm{A}+\mathrm{C}<\mathrm{B}+\mathrm{C}$. addition property.
(2) If $\mathrm{C}>0$ then $\mathrm{A} \times \mathrm{C}<\mathrm{B} \times \mathrm{C}$. property of multiplication by a positive real number
(3) If $\mathrm{C}<0$ then $\mathrm{A} \times \mathrm{C}>\mathrm{B} \times \mathrm{C}$. property of multiplication by negative real number.

Examples

Find the solution set for the inequality $2 x-1 \geq 5$ in R and represent the solution set graphically.

Solution

By adding 1 to the sides of the inequality it becomes $2 x \geq 6$
by multiplying the side of the in equality by ($\frac{1}{2}>0$) $x \geq 3$
\therefore The solution set in R is $[3, \infty$ [
and it is graphed by green color ray on the number line.

Find the solution set for the inequality $5-3 x>11$, in R, then represent the solution graphically.

Solution

By adding (-5) to the sides of the inequality then $-3 x>6$
by multiplying the sides of the inequality by $\left(-\frac{1}{3}<0\right)$ we get :
$\therefore \mathrm{x}<-2$

i.e., the solution set in R is est $]-\infty,-2[$
and it is represented by the green color ray on the number line.

Find the solution set for the in equality $-3 \leqslant 2 x-1<5$ in R and represent the solution graphically.

Solution

by adding (1) to the sides of the inequality- $3+1 \leqslant 2 x-1+1<5+1$
Namely, $-2 \leqslant 2 x<6$, and by multiplying the sides of the inequality by $\left(\frac{1}{2}>0\right)-1 \leqslant x<3$
\therefore the solution set in R is $[-1,3$] and it is graphed on the number line by the green color.
in example 3 What is the solution set for the inequality in N ?
What is the solution set for the inequality in Z ?

UNIT [2]: Relation Betwoen Two Variables

Lesson (1): Linear Relation of two variables

Think and Discuss

A person has some bills of LE 50 and LE 20. He bought an electrical apparatus for LE 390.

Think: How many bills of each type
 does he give to the seller?
Suppose: x represents the number of fifties bills, then the value of what he has of these bills is L.E 50x, y represents the number of Twenties bills, then the value of what he has of these bills is L.E 20 y .

Required is to know: x and y that verify the equation:

$$
50 x+20 y=390
$$

This relation represents a linear equation in two variables. Dividing both sides over 10 produces the following equivalent equation:

$$
\begin{aligned}
& 5 x+2 y=39 \\
& \therefore y=\frac{39-5 x}{2}
\end{aligned}
$$

Note that: x and y are natural numbers. Therefore, x should be an odd number.
The following table can be created to know the different possibilities of giving biils to the seller: a bill of L.E50 and 17 bills of L.E 20, or 3 bills of L.E 50 and 12 bills of L.E 20, or 5 bills of L.E 50 and 7 bills of L.E 20 , or 7 bills of 50 and 2 bills of L.E 20.

\mathbf{x}	\mathbf{y}	(\mathbf{x}, \mathbf{y})
1	17	$(1,17)$
3	12	$(3,12)$
5	7	$(5,7)$
7	2	$(7,2)$
9	negative	refused

2 The perimeter of an isosceles triangle is 19 cm . What are the different possible lengths of its sides? Side length $\in \mathbf{Z}_{+}$

Remember: The sum of the lengths of any two sides of a triangle is greater than the length of the third side .

The Relation of two variables

$a x+b y=c$ where $a \neq 0, b \neq 0$ is called a linear relation of two variable x and \mathbf{y} and can be described by a set of ordered pairs (\mathbf{x}, \mathbf{y}) verifying this relation.

Example:
Refer to the relation $2 x-y=1$
If $\mathbf{x}=\mathbf{1}, \therefore \mathbf{y}=1 \quad \therefore(1,1)$
satisfies the relation
If $\mathbf{x}=\mathbf{0}, \therefore \mathrm{y}=\mathbf{- 1} \quad \therefore(0,-1)$
satisfies the relation
If $\mathrm{x}=3, \therefore \mathrm{y}=5 \quad \therefore(3,5)$
satisfies the relation
If $\mathbf{x}=\mathbf{- 1}, \therefore \mathbf{y}=\mathbf{- 3}$
$\therefore(-1,-3)$
satisfies the relation

Thus, there are an infinite number of ordered pairs satisfying the relation.

Note that:

(2 The linear relation $2 x-y=1$, can be represented graphically by using any of the ordered pairs obtained before.

- Each point ϵ the straight line (in red) is represented by an ordered pair whose elements satisfy the linear relation $2 x-y=1$.

Graphing the Relation of two Variables

The relation \square where a and b or both are not equal zero. is called a linear relation of two variables x and y and can be represented graphically by a straight line.

$$
\text { for } a=0
$$

The relation is represented by a straight

 line parallel to \mathbf{x}-axis.Example : $2 \mathrm{y}=3$ i.e. : $y=\frac{3}{2}$ is represented by the red line which passes through the point ($0 . \frac{3}{2}$) and is parallel to x-axis.

Special case
the relation $\mathbf{y}=\mathbf{0}$ represents the \mathbf{x}-axis

Graph the relation: $x+2 y=3$

Solution

Choose some ordered pairs that satisfy the relation:
Example: For $y=2 \quad \therefore x=-1$
$\begin{array}{lll}y=0 & \therefore x=3 \\ y=-1 & \therefore x=5\end{array}$
$y=-1 \quad \therefore x=5 \quad(5,-1)$
satisfies the relation satisfies the relation satisfies the relation and so on \qquad

Lesson (2): the Slope of a line \& real-life Applications

Think and Discuss

When observing the motion of a point on a straight line from the location $A\left(x_{1}, y_{1}\right)$ to the location $B\left(x_{2}, y_{2}\right)$, where $x_{2}>x_{1}$ and $A, B \in$ line, then:
(1) the change in x-coordinate $=x_{2}-x_{1}$, and is called the horizontal change.
(2) the change in y-coordinate $=y_{2}-y_{1}$ is called the vertical change and
may be positive, negative or zero.

$$
\begin{aligned}
\text { The slope of a line } & =\frac{\text { change in } y \text {-coordinate }}{\text { change in } x \text {-coordinate }}=\frac{\text { vertical change }}{\text { horizontal change }} \\
\mathbf{S} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { where } x_{2} \neq x_{1}
\end{aligned}
$$

If: A (0, 2), B (2, 1);
then: the slope of $\overleftrightarrow{A B}=\frac{1-2}{2-0}=-\frac{1}{2}$

Not that:

The point A moves on the line downwards to the point B
(2) $y_{2}<y_{1}$
(3) The slope of the line is negative.

If: $A(-1,2)$ and $B(3,2)$,
then: the slope of the line
$\overleftrightarrow{A B}=\frac{2-2}{3-(-1)}=\frac{0}{4}=0$

Not that:

(1) The point A moves horizontally to point B.
(2) $y_{2}=y_{1}$
(3) The slope of the line $=$ zero

Example (4) :
if: $A=(2,1)$ and $B(2,3)$ thon: we can not calculate the slope. Because the definition of the slope is conditioned to have a change in the x -coordinate i.e. $\mathrm{x}_{2}-\mathrm{x}_{1} \neq 0$

Not that:

(1) The point A moves vertically to point B.
(2) $x_{2}=x_{1}$
(3) The slope of the line is an underfined number.

Application (2) :

Hazem filled up the 40 Litres tank of his car. As covering a distance of 120 km , the fuel gage shows the rest of fuel is $\frac{3}{4}$ of the tank. Draw a diagram to show the relation between the amount of fuel in the tank and coverd distance (This relation is linear).Calculate the coverd distance as the
 tank is totally getting empty.

Solution

On the starting point: $\mathbf{A}(\mathbf{0}, \mathbf{4 0})$

After covering $120 \mathrm{~km} \quad B=(120,30)$
The slope of $\overleftrightarrow{A B}=\frac{30-40}{120-0}=\frac{-1}{12}$
This slope means the fuel amount decreases with a rate of 1 L per 12 km , which means 1 L is enough to cover a distance of 12 km .

The coverd distance that make the tank empty $=\frac{\text { Fuel Amount }}{\text { Decreasing Rate }}=\frac{40}{\frac{1}{12}}$

$$
=40 \times \frac{12}{1}=480 \mathrm{~km} .
$$

Note that: $\overrightarrow{A B}$ intersects the distance-axis in the point $(480,0)$ which gives the required distance.

UNIT [3]: Statistiques

Lesson (1): Collecting \& Organizing Data

Organizing data and representing them in frequency tables

Example

Below are the scores of $\mathbf{3 0}$ students in an examination

7	10	7	4	5	8	6	7	13	12
2	9	11	12	11	9	15	12	13	9
5	14	19	3	9	14	3	13	8	17

Required: forming a frequency table with sets that represents that data.

Solution

To form a frequency table with sets, follow the following steps:
First: find the highest and the lowest values of the collected data?
let the previous collected data be X

$$
\begin{aligned}
& \text { then: } X=\{\mathrm{x}: 2 \mathrm{G} \times \mathrm{G} 19\} \\
& \text { i.e: } \mathrm{X} \text { values begins with } 2 \text { and ends in } 19 \\
& \text { i.e: the range }=\text { the highest value }- \text { the lowest value }=19-2=17
\end{aligned}
$$

Second: divide set X into a number of separate subsets each of them is equal in range. let them be 6 sets. \boxtimes The range of the set $=\frac{17}{6}$ i.e approximated to 3

Third: the subsets are as follow.

The first set	$2-$	the third set	$8-$
The second set	$5-$	The Fourth set	$11-$

Remark: 2-means the set of data greater than or equal to 2 and less than 5 and so on. Fourth: Record the data in the following table:

Set	tally	frequency
$2-$	$/ / / / / / / / / / /$	4
$5-$	$/ X / / / /$	6
$8-$	$/ / /$	7
$11-$	$/ /$	8
$14-$		3
$17-$		30
Total		

Fifth: Delete the tally column from the table to get the frequency table with sets. It can be written either verticaly or horizontaly. The following is the horizontal form of the table:

Sets	$2-$	$5-$	$8-$	$11-$	$14-$	$17-$	total
Frequency	4	6	7	8	3	2	$\mathbf{3 0}$

Lesson (2): the Ascending \& Descending Cumulative Frequency Table \& their Graphical Representation

Examples

The following table shows the frequency distribution for the heights of 100 students in a school in centimeters.

Tall (sets) in c.m	$115-$	$120-$	$125-$	$130-$	$135-$	$140-$	$145-$	Total
Number of students (frequency)	8	12	19	23	18	13	7	100

1. How many students are with height less than 115 cm ?
2. How many students are with height less than 135 cm ?
3. How many students are with height less than 145 cm ?

Form the ascending cumulative frequency table for these data and represent them graphically.

Solution

- Are there students with height less than 115c.m? No
-Are there students with height less than 135c.m? How many? yes, 62 student.
- How can you calculate the number of students with height less than 145 cm ? Add the number of students in the sets of height less than the set 145.
Now, to answer the previous questions in an easier way, form an ascending cumulative frequency table as follows:

Upper boundaries of sets	Ascending cumulative frequency
Less than 115	(0)
Less than 120	(6) $+8=$ (8)
Less than 125	(8) $+12=$ (20)
Less than 130	(20) $+19=$ (39)
Less than 135	(35) $+23=$ (32)
Less than 140	(62) $+18=$ (80)
Less than 145	(89) $+13=$ (33)
Less than 150	(33) $+7=100$

	ascending cumulative frequency table	
	Upper boundaries of sets	Ascending cumulative frequency
	Less than 115	zero
	Less than 120	8
i.e.	Less than 125	20
	Less than 130	39
	Less than 135	62
	Less than 140	80
	Less than 145	93
	Less than 150	100

To represent the ascending cumulative frequency table graphically:
(1) Specify the horizontal axis to the sets and the vertical axis to the ascending cumulative frequency
(2) Choose a drawing scale to draw the vertical axis such that the ascending cumulative frequency axis can hold the number of elements in a set
3 Represent the ascending cumulative frequency for each set and draw its line graph successively.

Second: The descending cumulative frequency table and its graphlcal representation. :

Of the previous frequency distribution which shows the heights of 100 students in a schoo in centimeters.
Find: The number of students with heights of 150 cm and more.
The number of students with heights of 140 cm and more.
The number of students with heights of 125 cm and more.
Form the descending cumulative frequency table and represent it graphically..

Solution

There are no students with heights of 150 cm and more .
The number of students with heights of 140 cm and more is $7+13=20$ students.
The number of students with heights of 125 cm and more is
complete: $19+$ \qquad + \qquad $+$ \qquad $+$ \qquad $=$ \qquad
To answer these questions in an easier way, form the descending cumulative frequency table as follows :

Descending cumulative frequency table		Lower limits of sets	descending cumulative frequency
	Ascending		
Lower limits of sets	cumulative frequency	115 and more	(92) $+8=100$
115 and more	100	120 and more	(80) $+12=$ (92)
120 and more	92	125 and more	(81) $+19=80$
125 and more	80	130 and more	(38) $+23=1$ (11)
130 and more	61	135 and more	(20) $+18=$ (38)
135 and more	38	135 and more	
140 and more	20	140 and more	(7) $+13=20$
145 and more	7	145 and more	(0) $+7=7$
150 and more	zero	150 and more	-(0)

To represent this table graphically, follow the steps of representing the ascending cumulative frequency to get the following graphical representation:

Lesson (3): Arithmetic Mean, Median \& Node

First: the mean

You have learned to find the mean for a set of values and leamed that:

Example: If the ages of 5 students are 13، 15، 16، 14، and 17 years old, then
The mean of their ages $=\frac{13+15+16+14+17}{5}$

$$
=\frac{75}{5}=15 \text { years }
$$

Remark: $15 \times 5=13+15+16+14+17$

The mean: is the simplest and most commonly used type of averages, It's that value given to each item in a set, then the total of these new values is the same total of the original values. It can be calculated by adding up all values, then divide the sum by the number of values.

Finding the mean of data from the frequency table with sets:
How can you find the mean of the following frequency distri-
bution:

Sets	$10-$	$20-$	$30-$	$40-$	$50-$	Total
Frequency	10	20	25	30	15	100

Remark: To find the mean for a frequency distribution with sets, follow the following steps:
(1) Determine the centers of sets:

The center of the first set $=\frac{20+10}{2}=15$. The center of the second set $=\frac{30+20}{2}$ $=25 \ldots$ and so on
Since the ranges of the subsets are equal and each $=10$
We consider the upper limit of the last set = 60 and then :

$$
\text { its center }=\frac{50+60}{2}=55
$$

(2) Form the following vertical table:

Sets	Centre of the sets (X)	Frequency	Centre of the sets X	\times \times	frequency F
$10-$	15	10		150	
$20-$	25	20		500	
$30-$	35	25		875	
$40-$	45	30		1350	
$50-$	55	15		825	
Total		100		3700	
The total of ($F \times \times$)					

$$
=\frac{3700}{100}=37
$$

Second: the median

The median is the middle value in a set of values after arranging it ascendingly or descendingy such that the number of values which are less than it is equal to the number of values which are greater than it.

Finding the median of a frequency distribution with sets graphically:
1 Draw the ascending or descending cumulative frequency table, then draw the cumulative frequency curve of it .
(2) Determine the order of the median $=\frac{\text { The total of frequency }}{2}$.

3 Determine point A on the vertical axis (frequency) which represents the order of the median.
(4) Draw a horizontal straight line from point A to intersect the curve at a point. Form this point, draw a vertical straight line on the horizontal axis to intersect it at a point that represants the median.

The following table shows the daily wages of $\mathbf{1 0 0}$ workers in a factory..

daily wages in LE (sets)	$15-$	$20-$	$25-$	$30-$	$35-$	$40-$	Total
Number of workers (frequency)	10	15	22	25	20	8	100

Required:

1. Graph the ascending and descending cumulative frequency curves on one figure.
2. Can you find the median wage from this curve?

Solution

| Upper boundaries
 of sets | Cumulative
 frequency | Lower boundaries
 of sets | Cumulative
 frequency |
| :--- | :---: | :---: | :---: | :---: |
| Less than 15 | zero | 15 and more | 100 |
| Less than 20 | 10 | 15 and more | 90 |
| Less than 25 | 25 | 15 and more | 75 |
| Less than 30 | 47 | 15 and more | 53 |
| Less than 35 | 72 | 15 and more | 28 |
| Less than 40 | 92 | 15 and more | 8 |
| Less than 45 | 100 | 15 and more | zero |

Remark:
The ascending cumulative frequency curve intersects with the descending cumulative frequency curve at one point which is m.

The y-coordinate for the point $M=50$
$=$ the order of the median
\therefore The X-coordinate of the point M determines the median
every 10 mm of the x coordinate represents L.E 5
Complete: $\mathbf{2} \mathbf{~ m m}$ represents
The median wage $=30+\frac{2 \times 5}{10}=$ LE 31 .
practice

Draw the descending cumulative

Third: the mode

The mode is the most common value in the set or in other words, it is the value which is repeated more than any other values.

The following table shows the frequency distribution for the scores of $\mathbf{4 0}$ students in an examination.

Sets	$2-$	$6-$	$10-$	$14-$	$18-$	$22-$	$26-$
Frequency	3	5	8	10	7	5	2

Find the mode of this distribution graphically

Solution

You can find the mode of this distribution graphically using the histogram as follows: First: draw a histogram.
1 Draw two perpendicular axes: one horizontal to represent sets and the other vertical to represent the frequency of each set.

2 Divide the horizontal axis into a number of equal parts using a suitable drawing scale to represent sets.
3 Divide the vertical axis into a number of equal parts using a suitable drawing scale such that the greatest frequency among sets can be represented..
4 Draw a rectangle whose base is set (2-) and height is equal to the frequency (3).
5 Draw another rectangle adjacent to the first one whose base is set (6-) and height is equal to the frequency (5).
6 Repeat drawing the rest of adjacent rectangles till the last set (26-).

Second: Finding the mode from the histogram, to find the mode from the histogram, we observe that: the most repeated set is (14-), and it is called the mode set, why?
Define the intersection point of $\overline{A D}, \overline{B C}$ from the graph, and from this point, drop a vertical line on the horizontal axis to define the sequential value within that distribution.

From the graph, what's the mode value?

REMEMBER

$(a+b)(a-b)=a^{2}-b^{2}$
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
$a^{2}+a b+b^{2}=(a+b)^{2}-a b$
zero $=$ zero

It's meaningless to find $v a$ if a is a negative number.

MC.ír additive inverse
© '98, MATHEMATICAL CONCEPTS, inc., Keyport, NJ

$.5 \overline{57}$ is more than 5 tenths
 $.5 \overline{57} \rightarrow \underset{\substack{\text { tent } \\ \text { tens }}}{5 \text { nninety-nineths }}$
 $\frac{5 . \overline{57}}{10} \rightarrow \frac{5 \frac{57}{10}}{10}=\left(\frac{5 \frac{57}{99}}{10}\right)\left(\frac{99}{99}\right)=$ $\frac{5(99)+57}{990}=\frac{495+57}{990}=\frac{552}{990}=\frac{92}{165}$

MĆi.
slope-intercept
/slopin「Ysept/
©'99, MATHEMATICAL CONCEPTS, inc., Keyport, NJ

slope $=m=-2$
y-intercept $=(0, b)$ $=(0,3)$

MC,
set
$/ \mathrm{set} / \mathrm{MC}_{\text {; }}$,
slope
/slop/
$\{2,3,4,5,6\} \begin{gathered}\text { a set of } \\ \text { numbers }\end{gathered}$ elements or members of the set

Solve $3 x-6=12$

©'99, MATHEMATICAL CONCEPTS, inc., Keyport, NJ

Slope is the ratio of
vertical change \rightarrow up-down difference

$\overrightarrow{M C}_{\boldsymbol{r}} \mathbf{i}$
exponent
/Eksponint/
©'99, MATHEMATICAL CONCEPTS, inc., Keyport, NJ

$$
\begin{aligned}
& 3 x^{5}=3 \cdot \underbrace{3 \cdot x \cdot x \cdot x \cdot x} \underbrace{}_{\text {EXPONENTS ARE CIRCLED. }} \\
& \text { five factors of } x \\
& x^{5}=\underbrace{1 \cdot x \cdot x \cdot x \cdot x \cdot x}_{\text {five factors of } x} \\
& 5 x^{3}-2 x^{[2]}+6^{\text {UNDERSTOOD }} \\
& \text { five factors of } x \\
& x^{-1}=1 \div x=\frac{1}{x} \\
& x^{2}=1 \cdot \underbrace{1 \cdot x}_{\text {two }} \cdot x \\
& x=x^{1}=1 \cdot \underbrace{x} \\
& \text { one factor of } x \\
& x^{-2}=1 \div x^{2}=\frac{1}{x^{2}} \\
& x^{0}=1 \underbrace{}_{\text {zeroctors of }} \\
& x^{\frac{2}{3}}=\sqrt[3]{x^{2}} \\
& x^{\frac{5}{2}}=\sqrt[2]{x^{5}}=\sqrt{x^{5}}
\end{aligned}
$$

MC:

distributive law /distribjutivlo/

© $\because 98$, MATHEMATICAL CONCEPTS, inc., Keyport, NJ

$$
\begin{aligned}
3(7+4-2) & =3 \cdot 7+3 \cdot 4-3 \cdot 2 \\
3(9) & =21+12-6 \\
27 & =27
\end{aligned}
$$

Though the parentheses indicate
the addition is to be completed
first, the distributive law pernits multiplication to be completed first in this manner.

Sometimes this is the only way to complete the computation.
Simplify:
$\frac{1}{\square}$
$3 a+2(a+c)=3 a+2 a+2 c=5 a+2 c$

