

في الشكل المقابل:

اب / قطر في الدائرة م ، وج مهاس عند ج

 $\sqrt{4}\sqrt{1}$ اثبت ان $\sqrt{4}$

الشكل الروه م رباعي دائري كا وه = و ج

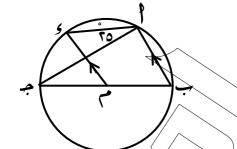
البرهان ن أبرقط في الدائرة ن و (المراب = ٩٠ البرهان

 $^{\circ} 1 \wedge . = ^{\circ} \cdot . + ^{\circ} \cdot . = () \times () \times$

الشکل ا و ه ح رباعی دائری ..

(1) الخارجة $\neq \emptyset$ الخارجة (1) الداخلة المقابلة (1)

(7) عند ج \therefore $\sqrt{\angle_{e}}$ و ج (2) الهميطية (3) الهميطية (4)



في الشكل المقابل:

 $\frac{1}{4}$ $\frac{$

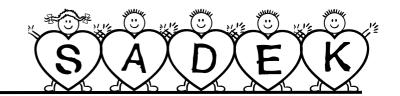
البرهان

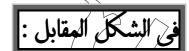
 ~ 0 (~ 0 و المحيطية = 0 ~ 0 ~ 0 المركزية = ~ 0 يشتركان في جو و

ن ب ج قطر ن ف (كب الم ج) المحيطية = ٥٠ (محيطية مرسومة في نصف موائرة ()

 $\overline{\cdot\cdot\cdot}$ اب المرى ، ب جو قاطع لهما $\cdot\cdot\cdot$ ف(\leq اب جر) = (\leq ومر جر) باالتناظر $\cdot\cdot\cdot$

 $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{$





ب ج قطر في الدائرة ، ج منتصف ا ء

و ه مماس للدائرة عند و ،

، اثبت ان : ﴿

 $^{\circ}$ الشکل و ه و (-1) رباعی دائری (-1) ه و (-1)

البرهان : ج منتصف ا ء . فراهم = ٥٠ (م ء)

() (>->) = (>->)

من () ، (\mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} من (\mathbf{Y}) \mathbf{Y}

ن. $\sqrt{2}$ وب ه $\sqrt{2}$ و و ه $\sqrt{2}$ وهها یشتر کان فی القاعدة $\sqrt{2}$ وفی جهة واحدة منه.

 $-\frac{--}{}$ نظر في الدائرة \cdot : 0 $(\left \psi + 2 \right) \right \right \right \left \right \r$

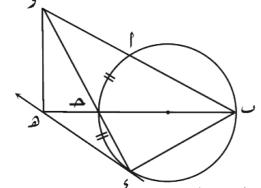
.. قه (کب ه و) = .p

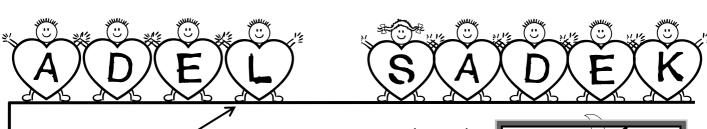
في الشكل المقابل:

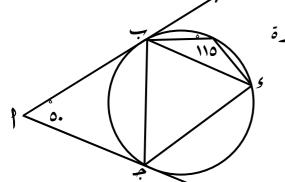
اثبت ان: ا و = ه و

 $(\angle) = (\land) = (\land) = (\land) = (\angle) = (\angle)$ البرهان $(\angle) = (\land) = (\land) = (\land)$

 $\mathcal{L}_{\mathcal{L}} = \mathcal{L}_{\mathcal{L}} + \mathcal{L}_{\mathcal{L}} \mathcal{L}_{\mathcal{L}} + \mathcal{L}_{\mathcal{L}} + \mathcal{L}_{\mathcal{L}} = \mathcal{L}_{\mathcal{L}} + \mathcal{L}_{\mathcal{L}} +$







في الشكل المقابل: أب ، أج مهامان للدائرة

اثبت ان 🗘 جب ب ينصف (🖒 و ج ۱

-1 / - 5 O

ھ ب ج ≠ ہب و

البرهان 😯 و جر پ هرگرباعی دائری 🖰 فرک و جرب 🕒 ۱۸۰ – ۱۸۰ و و

ن أب ، أج ممامان للدائرة عند ب ج ن أب = أج

٠٠ ع (ف م ب) = ع (أح ب ب ع) ع الم الم ع ا

: (کے ا ج ب) المماسية ، (کے ب وج) المحيطية يشتر کان في (ج ب)

.: ق (کے اور کے اور

 $\overline{+}$ $\overline{+}$

في △ ب وج ن الحريب وج) = الحريب جري ا

في الشكل المقابل:

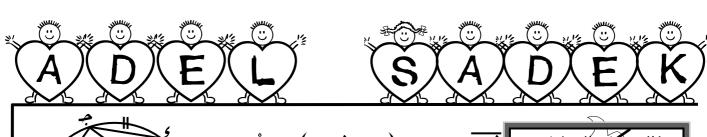
 $(\widehat{1}, \widehat{1})$ \circ $(\widehat{1}, \widehat{1})$

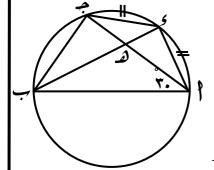
البرهان ٠٠ ١٥ (ج و ٢٠) = ٣٠

 $\mathring{0} = \mathring{r} \times \frac{1}{7} = (\overbrace{-2})$ المصيطية $= \frac{1}{7} \otimes (\overbrace{-2}) = (\overbrace{-2}) \otimes (\overbrace{-2}) \otimes (\underbrace{-2}) \otimes (\underbrace{-2})$

 $\{\Delta\} = \overline{+} \cap \overline{+} \cdots$

 $\left[\widehat{(\gamma_{+})} \otimes - \widehat{(\gamma_{+})} \right] \frac{1}{1} = (2 \times 1) \otimes \therefore$





في الشكل المقابل: الب قطر، قه (حبرا ب ع ٠٠٠)

- (اوجد (او جد) ه (او جد) او جد)
 - اثبت الع براه = ب هـ

البرهان : (کھرا ہے) ﴿ کہ و ہ) یشتر کان فی ب ہ

- .: ق (کرب و ج) = (ه (کرج ۱۹ ب) ... نه درک ب
- ن أب قطر ن قر أب المراب عند المرا
- $\mathring{\eta}_{1} = \mathring{\eta}_{1} \div \mathring{\eta}_{1} = (\widehat{\eta}_{1} + \widehat{\eta}_{2}) = (\widehat{\eta}_{1} + \widehat{\eta}_{2}) = (\widehat{\eta}_{1} + \widehat{\eta}_{2} + \widehat{\eta}_{2}) = (\widehat{\eta}_{1} + \widehat{\eta}_{2} + \widehat{\eta}_{2} + \widehat{\eta}_{2} + \widehat{\eta}_{2}) = (\widehat{\eta}_{1} + \widehat{\eta}_{2} +$
 - *. = ٢ ÷ ٦. = (ج ج ا کے) م = (ج ب ا کے) م :

في الشكل المقابل: السكل المقابل المقا

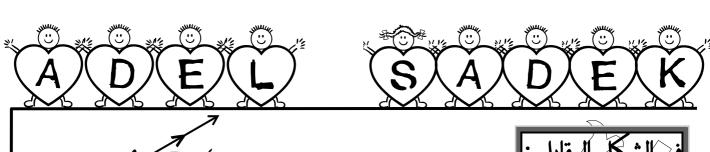
ب ه مهاس عند ب ، و منتصف آج

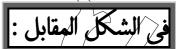
- آ اثبت ان: أه ب و رباعی دائری
- (∠ج م ب) = ۲ ق (∠ه)

البرهان : ب ه مهاس عند ب ن اب ل به ه ن فه (کر کاب ه) = ۹۰ ه

- $^{\circ}$ و منتصف آج \therefore م $_{2}$ \perp آج \therefore \otimes (\angle ا وه) =
- - $/(\Delta \Delta) = (\Delta + 1) = (\Delta \Delta)$.. اله ب و رباعی دائری ... به $\Delta = (\Delta \Delta)$

∴ الالاحمر ب) = ۲ الالاها ..





اوجد: له (ک ام ی)، قه (ب ه)

$$\mathring{\tau}_{\bullet} = \Gamma \div \mathring{\iota}_{\bullet} = (2 + 1) \times 2 \div 2 = 1$$

في الشكل المقابل:

ب جہ مہاس عند ب ، ھ منتصف (و کے

اثبت ان: ا ب ج و رباعی دائری

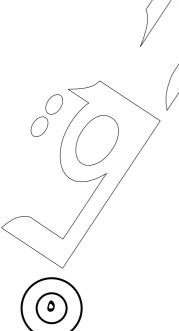
یشترکان فی (ه ب)

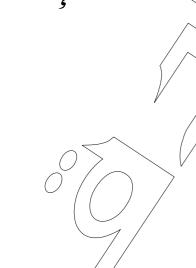
$$\widehat{(a,c)} = \widehat{(a,c)} : \widehat{(a,c)} = \widehat{(a,c)} : \widehat{(a,c)} = \widehat{(a,c)}$$

$$(\cdot) \cdot (\cdot) \cdot (\cdot) = (\cdot) \cdot (\cdot$$

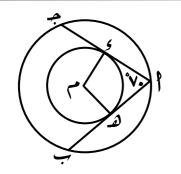
وهما یشترکان فی ج و وفی جهة واحدة منها

:: ا ب ج ی رباعی دائری









في الشكل المقابل:

آب، المجرعماسان للدائرة الصغرى، ق (کے اب) = ، v.= (

()اثبت ان الم اله هم و رباعی دائری

اوجد: ٥٠ (كوم ه) اثبت ان: أب = أج

البرهان : ا جر مواس عزاد و نه م و ۱ ا جر نه (۱ و م) ه.، هُ

ن ا ه م/و (رباعی دائری

 $\hat{\mathbf{N}} = \hat{\mathbf{V}} - \hat{\mathbf{N}} \hat{\mathbf{A}} = (\hat{\mathbf{I}} \times \hat{\mathbf{A}}) \hat{\mathbf{A}} = (\hat{\mathbf{I}} \times \hat{\mathbf{A}}) \hat{\mathbf{A}} = (\hat{\mathbf{A}} \times \hat{\mathbf{A}}) \hat{\mathbf{A}$

ا ب = ا ج (اوتار متساویة)

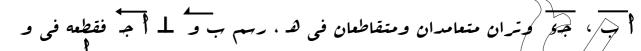
ا ب ج مثلث مرسوم داخل دائرة مركزها م كرش قه (كم ام ب) = ، ف

 $(egin{array}{c} egin{arr$

الاجابة

ن ك ب م ج البركزية، ك ب أ ج البعيطية يشتركان في أ جَرَّ

 $\mathring{\cdot}$ م ق ز د $\mathring{\cdot}$ ب ج الداخلة = $\mathring{\cdot}$.. $\mathring{\cdot}$ د $\mathring{\cdot}$ ب ج $\mathring{\cdot}$ اب ج $\mathring{\cdot}$ الماخلة = $\mathring{\cdot}$ د م ق ز د $\mathring{\cdot}$ ب م ق ز د $\mathring{\cdot}$ ب م ق ز د ا



حیث کو 🎁 🎙 جست ان : و جده ب رباعی دائری

الاجابة

$$^{\circ}$$
 $^{\circ}$ $^{\circ}$

ن و ج ه ب رباعی د/نری :

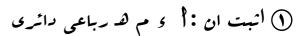
$$(\angle + 2) = 0$$

$$(\angle + 2) = 0$$

$$(\angle + 2) = 0$$

 $(\widehat{)}$ ولكن : $((\angle) + () + ()) = (()) () ولكن : <math>(() + ()) = (())$

في الشكل المقابل:



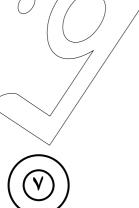
 $oldsymbol{\lozenge}$ اوجد : $oldsymbol{\lozenge}\left(igwedge igwedge igwedge igo$ و م $oldsymbol{\lozenge}$

$$\overline{A}$$
: ه منتصف \overline{A} \overline{A}

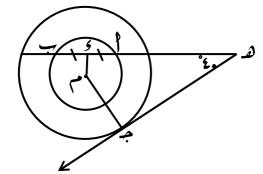
$$\sim e^{-\frac{1}{2}} \cdot e^{-\frac{1}{2}} \cdot e^{-\frac{1}{2}} \cdot e^{-\frac{1}{2}} \cdot e^{-\frac{1}{2}} \cdot e^{-\frac{1}{2}} \cdot e^{-\frac{1}{2}}$$

$$^{\circ}$$
 $^{\circ}$ $^{\circ}$

.. ای م ه رباعی دانری







في الشكل المقابل: هـ ماس عند ج

اثبت ای و م ج ه رباعی دائری

 \bigcirc اوجد \bigcirc اوجد \bigcirc

البرهان

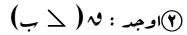
ن و منتصف البرن م ولا اب ن ق (لا هو م) = . ف « لا اب ن ق الم

ن ه ج مهاس عند جرب م ج له ج له به قد الله م م الله عند عند عند عند م الله عند عند م الله عند عنه الله عند عنه ا

:. ء م ج ہ رباعی دائری⁾

 $\mathring{\Sigma} = \mathring{\Sigma} - \mathring{\Lambda} = (2) / 2 - \mathring{\Lambda} = (2) / 2 - \mathring{\Lambda} = (2) / 2 = 2$

في الشكل المقابل: ﴿ وَ مِمَاسَ عَنْدُ إِنَّ وَكُولُ الْمُقَابِلُ : ﴿ وَمِمَاسَ عَنْدُ إِنَّ وَكُولُ الْمُقَابِلُ :



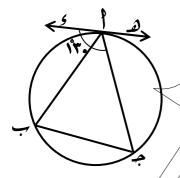
: ه ، ١ ، ٤ على استقامة واحدة

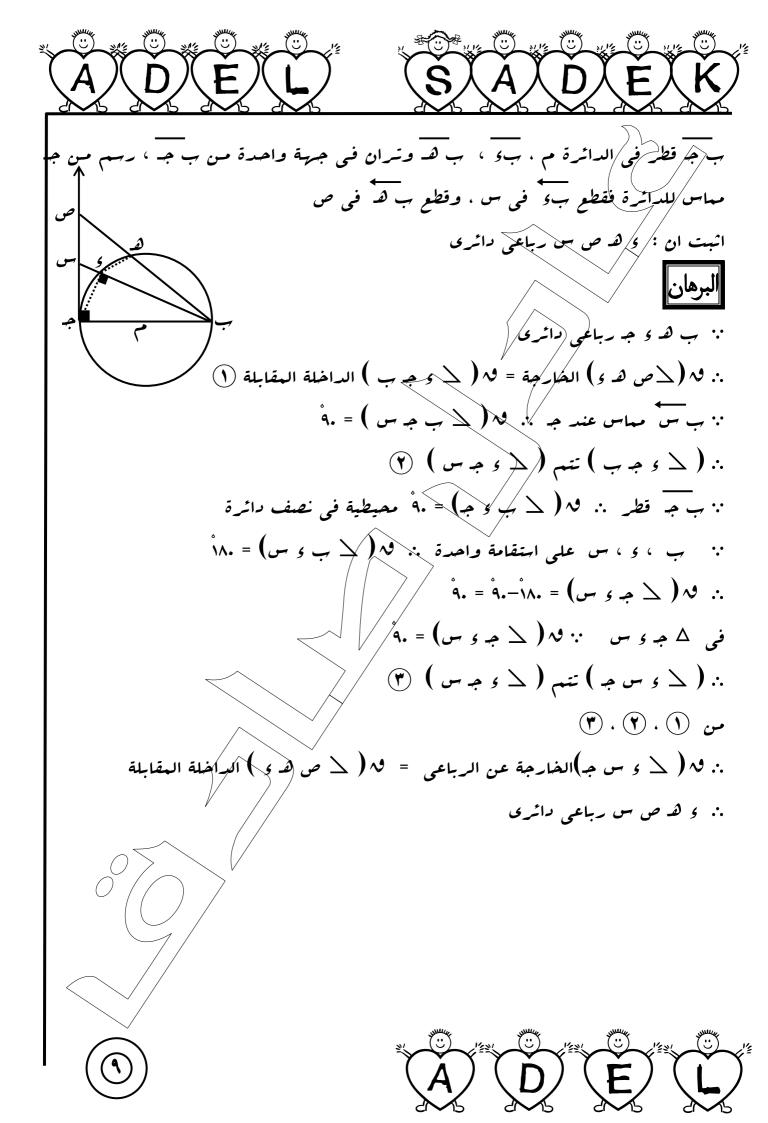
$$\hat{A} = (\Delta f \leq \Delta) \Delta :$$

∵ هے ک مہاس عند ا

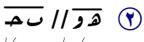
.: ق (ك م أه) المماسية = ق (ك أب ج) المصيطية يشتركان في (ج

·. و (کے اب جا) من ..





ا سُ م و شکل رہاعی دائے ری فیسه أثبت أن () أ ه و و شكل رباعي دائري



∴ اب ج و رباعی دائر کی .. فر کے ب ا ج) = ق کے ق (کے ب و ج)

(7) (2 + 2 + 2) (2 + 3 + 2) (2 + 3 + 2) (3 + 3 + 2) (4 + 3 + 2) (4 + 3 + 2) (5 + 3 + 2) (7 + 3 + 2

وهبا یشترکان فی ه و وفی جهة واحدة کمنرا | : ۱ ه و ۶ رباعی دائری

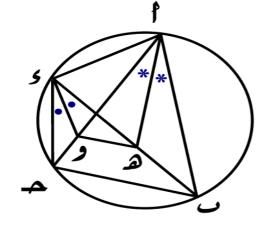
ولکن $\wp (oxedsymbol{eta} \leftarrow eta = ig) = \wp (oxedsymbol{eta} \leftarrow oxedsymbol{eta} = oxedsymbol{eta}$ ولکن فی این میرود

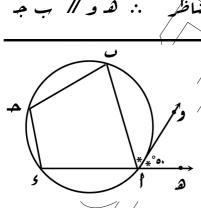
 $\overline{\square}$ ده د \square وه د \square \square ده د نیاظر \square ده و نیاظر \square د نیاظر \square د نیاظر \square د د نیاطر \square

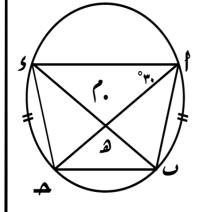
ن أو نصف ∠ (ه أب)

".. = "o. × r = (-, l → \) ...

 $\Delta = \{ eta : (eta > eta) : (eta > eta = (eta > eta) الداخلة البيَّابلة = ... \$







في الشكل المقابل:

م ص ح و شکل رباعی مرسوم داخل دائرة م

$$((A)) 0 = ((A)) 0$$

بإضافة ف (ب ج) للطرفين

$$(\widehat{\varphi}, \widehat{\varphi}) \wedge \varphi + (\widehat{\varphi}, \widehat{\varphi}) \wedge \varphi = (\widehat{\varphi}, \widehat{\varphi}) \wedge \varphi + (\widehat{\varphi}, \widehat{\varphi}) \wedge \varphi : (\widehat{\varphi}) \wedge \varphi : (\widehat{\varphi}, \widehat{\varphi}) \wedge \varphi : (\widehat{\varphi}, \widehat{\varphi}) \wedge \varphi : (\widehat{\varphi}, \widehat{\varphi}) \wedge \varphi$$

$$\therefore \emptyset(\widehat{9}, \widehat{9}) = \emptyset(\widehat{\cancel{(4, 2)}})$$
 اولا \therefore

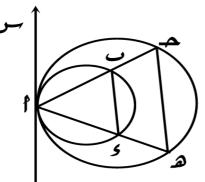
$$\mathring{\mathbf{r}}. = (\mathbf{r} \ \mathbf{r} \ \mathbf{s} \) \ \underline{\wedge} \ \mathbf{v} = (\ \mathbf{r} \ \mathbf{r} \ \mathbf{s} \) \ \underline{\wedge} \ \mathbf{v} = (\ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \) \ \mathbf{v} = (\ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \) \ \mathbf{v} = (\ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \) \ \mathbf{v} = (\ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \) \ \mathbf{v} = (\ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \) \ \mathbf{v} = (\ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \) \ \mathbf{v} = (\ \mathbf{r} \) \ \mathbf{v} = (\ \mathbf{r} \ \mathbf{$$

$$\mathring{\mathbf{r}} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathring{\mathbf{r}} \cdot \mathbf{r} \cdot \mathring{\mathbf{r}} \cdot \mathring{\mathbf$$

في الشكل المقابل: اثبت ان: ١ س = ٢٠ ص

البرهان

بإضافة ق (س ص) للطرفين



في الشكل المقابل: ٢٠ س مهاس مشترك للدائرتان

اثبت ان برع با هرج

البرهان

ن اس مهاس للدائرة الصغرى عند ا

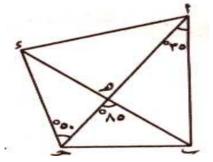
- ن و المحمد المعامية (سام ب المحمد المعامية (سام ع ب المحمد المعامية (سام ب) المح
 - ۰: ا کس مهاس للدائرة الکبری عند ۱ ک
- - (Y), (1)
 - $\overline{R} = \frac{1}{2} \times \frac{1}{2$

في الشكل المقابل:

اثبت ان: ۶ س معاس للدائرة العارة بالنقط (۹، /ب اسع

البرهان

- - في ۵ ۱ ب ۶ ب ۶ ب ۹ ب
 - $(-5) \sim 0 = (5 -7) \sim 0 :$
 - ·· م. و. ز.د ه ۴ ب ج = ۱۸۰
 - $\mathring{\circ}\circ=(\mathring{\mathsf{v}}.-\mathring{\mathsf{v}}\wedge.)\frac{\mathsf{v}}{\mathsf{v}}=(\mathsf{s} \mathrel{\checkmark} \mathsf{r}) \mathrel{\searrow} \mathsf{v} :$
 - (۶ ب ۱ کس) = ۷ ← (۱ کس ب ۲ کس ب ۲ کس ب ۲ کس ب
 - ن ب ج مداس للدائرة الدارة بالنقط ۱ ، ب ، ۶



في الشكل المقابل:

اثبت أن را ب ج ۶ رباعی دائری

البرهان

 $\mathring{r}o = \mathring{o}. - \mathring{h}o = (ج ع)$ ده ج $: \mathcal{h}$ ده ج $: \mathcal{h}$ ده ج $: \mathcal{h}$

وهبا یشترکان فی ب/ج/وفی جهة واحدة منها ۴۰۰ ب ج۶ رباعی دائری

في الشكل المقابل:

ا ب مثلث حاد الزوايا مرسوم داخل دائرة ،

رسم $\frac{1}{16}$ ل $\frac{1}{16}$ قطع $\frac{1}{16}$ في 6 والدائرة في ه ،

رسم $\overline{\Delta}$ ل أل قطع أل في س والدائرة في ص

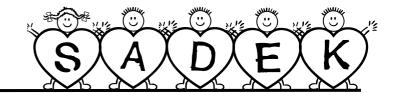
أثبتأن: ﴿ أَ سَ وَ حَسْكُلُ رَبَّاعَى دَائْرَى ﴿ أَسُو اللَّهِ اللَّهُ اللَّا اللَّا اللَّا اللَّهُ اللَّا اللَّهُ اللَّا اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللل

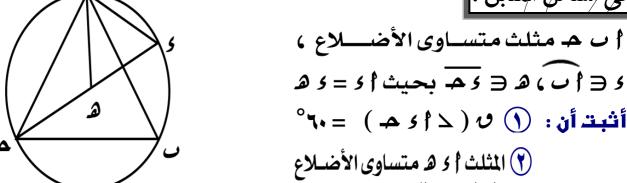
 $\sqrt[8]{9} \cdot = (اس ج) - \sqrt[8]{2}$ \therefore $\rightarrow \mathbb{R}$

وهما يشتركان في القاعدة آج وفي جهة واحدة منها ن المس عج رباعي دائرى

∴ ٥٠ (ا ۶ س) = ٥٠
 ن ٥٠

ولکن $\emptyset \triangle ($ $\emptyset \neq \emptyset) = \emptyset \triangle ($ $\emptyset \neq \emptyset) یشترکان فی <math>\emptyset = \emptyset$





البرهان به ک ۲ برج متساوی الاضلاع .. قد ک (۲ ب ج) = ۳۰ البرهان

٠٠ و ١٠ ١ ع ج) = ٥٠ ك (الم ج) يشتركان في الم ج

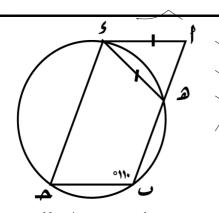
.: قد ك (ا ع ج) = . بر أو لا

 $\mathring{\tau}_{\bullet} = (\mathring{a} \mathring{a} \mathring{b}) \underline{\wedge} \mathring{a} = (\mathring{a} \mathring{a} \mathring{a}) \underline{\wedge} \mathring{a}) \underline{\wedge} \mathring{a} = (\mathring{a} \mathring{a} \mathring{a}) \underline{\wedge} \mathring{a})$ فی $\Delta \mathring{a} \mathring{a} \mathring{a} \mathring{b} = (\mathring{a} \mathring{a} \mathring{a}) \underline{\wedge} \mathring{a})$

ت. م. و. ز. د که ۱ ۶ هه = ۱۸۰ – ۱۸۰ = (که ۱ ۶ هم عند د. د که ۱ ۶ هم عند د. د که از د که د د که د د که د د که د

(\$ a | |) _/= (a | 5 | |) _\varphi = (a | 5 |) _\varphi :

∴ ۵ ۹ ۶ ه متساوی الاضلاع ثانیا



في الشكل المقابل: ٢ ^{ب ج ٤} متوازى أضلاع

اوجد: ق کے (۴ ۶ه)

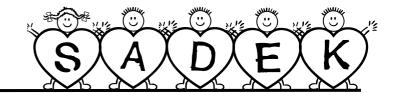
البرهان ۲۰۰۱ ب ج ۶ متوازی أضلاع

٠٠٠ = (ب) کے کی + (ا) کے کی ...

 $\mathring{\mathbf{v}}_{\bullet} = \mathring{\mathbf{v}}_{\bullet} - \mathring{\mathbf{v}}_{\bullet} = (\mathring{\mathbf{r}}_{\bullet}) \rightarrow \mathring{\mathbf{v}}_{\bullet} :$

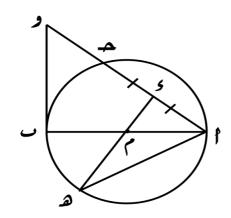
فى △ ١ كھ : ١ ك = ھ ك .. ق م (١ ھ ك) = ق م ر ١ م ك ﴿

 $\overset{\circ}{\circ}$ $\overset{\circ}$



في الشكل المقابل:

رسم وم فقط الدائرة م ، و منتصف \overline{A} ، و منتصف \overline{A} ، رسم \overline{A} فقط الدائرة فقط \overline{A} فقط رسم \overline{A} فقط الدائرة فقطع \overline{A} فى و رسم \overline{A} الشكل \overline{A} \overline



البرهان · · و ب مماس عند ب · ، اب ل عند ب · ، اب و ب ماس عند ب اب و ب عند ب اب و ب و ، قد ك

 \mathring{q} . = (\mathring{q}) $\Delta \mathring{q}$ $\Delta \mathring{q}$

١٨٠ = ٩٠ + ٩٠ = (٢) كل ١٨٠ = (٢) كل ١٨٠ :

ن م ب و ۶ رباعی دائری /اولا

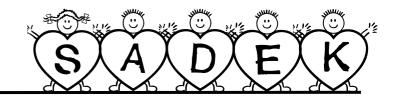
ولكن قه ك (م م ع) المركزية = ٢ قه كم (م م) المحيطية

في الشكل المقابل:

اثبت ان : ۴ ب ج ۶ رباعی دائری

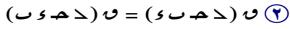
البرهان : ج 5 // ب ۴ ، ب ج قاطع لهما

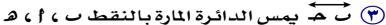
 $\mathring{\mathsf{N}} = \mathring{\mathsf{N}} \times \mathsf{N} = (\mathsf{R} \times \mathsf{R} \times$



في الشكل المقابل:

أثبت أن: (€ 5 ينصف < أ 5 حـ





$$(\widehat{z},\widehat{s}) = (\widehat{z},\widehat{s}) =$$

من () ، () \cdot (ج ب ع) عنیا \cdot (ب ع ج) = 0 (ب ع ج) \cdot (ب ع ب ع) من () من ()

$$(\mathbf{S} + \mathbf{F}) \leq \mathbf{V} = (\mathbf{F} + \mathbf{F}) + \mathbf{V} \cdot \mathbf{V} \cdot \mathbf{V} = (\mathbf{F} + \mathbf{F}) \cdot \mathbf{V} \cdot \mathbf{V} \cdot \mathbf{V} = (\mathbf{F} + \mathbf{F}) \cdot \mathbf{V} \cdot \mathbf{V} \cdot \mathbf{V} = (\mathbf{F} + \mathbf{F}) \cdot \mathbf{V} \cdot \mathbf{V} \cdot \mathbf{V} = (\mathbf{F} + \mathbf{F}) \cdot \mathbf{V} \cdot \mathbf{V} \cdot \mathbf{V} \cdot \mathbf{V} = (\mathbf{F} + \mathbf{F}) \cdot \mathbf{V} \cdot \mathbf{V} \cdot \mathbf{V} \cdot \mathbf{V} = (\mathbf{F} + \mathbf{F}) \cdot \mathbf{V} \cdot \mathbf{V} \cdot \mathbf{V} \cdot \mathbf{V} = (\mathbf{F} + \mathbf{F}) \cdot \mathbf{V} \cdot \mathbf{V} \cdot \mathbf{V} \cdot \mathbf{V} = (\mathbf{F} + \mathbf{F}) \cdot \mathbf{V} \cdot \mathbf{V} \cdot \mathbf{V} \cdot \mathbf{V} \cdot \mathbf{V} = (\mathbf{F} + \mathbf{F}) \cdot \mathbf{V} \cdot$$

.: بن ج مداس للدائرة الدارة برؤوس ﴿ /بِ اللهِ مَالِثًا

فى الشكل المقابل: اثبت ان : ٢ و ص س رباعي دائرى

البرهان

ن البجورباعي دائري

ن و جس ص رباعی دائری

 $\triangle \wedge \triangle = 0$ الخارجة = $0 \wedge \triangle = 0$ الداخلة المقابلة $\triangle \wedge \triangle = 0$

 $^{\circ}$ ن ب ، ج ، س علی استقامة واحدة $^{\circ}$ د $^{\circ}$ د $^{\circ}$ ب ج و $^{\circ}$ $^{\circ}$ د $^{\circ}$

 $^{\circ}$ ن $^{\circ}$ و ص س رباعی دائری $^{\circ}$.. $^{\circ}$ و ص س رباعی دائری $^{\circ}$



