
الرياضيات المديثة

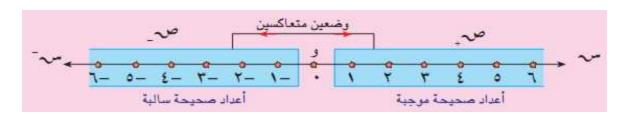
الصف السادس الابندائي

الفصل الدراسي الثاني ٢٠١٢

الأعداد الصحيحة صم

الوحدة الاولى

تذكر معلومات سابقة


$$\{\ldots, \xi, T, T, T\} = \{1, T, T, T\}$$

مجموعة الاعداد الصحيحة:

$$\{\ldots, \Upsilon, \Upsilon, \Upsilon, \Upsilon\} = \{-1, \Upsilon, \Upsilon, \Upsilon\}$$

$$\{\ldots, \Upsilon-, \Upsilon-, \Upsilon-, \Upsilon-\} = \underline{\ }$$
 الاعداد الصحيحة السالبة $\underline{\ }$

 \checkmark مجموعة الاعداد الصحيحة \checkmark

ملحوظة هامه الصفر ليس عدد صحيح موجب ولا عدد صحيح سالب

القيمة المطلقة | ٩ | : هي المسافة بين موقع النقطة ٩ والصفر على خط الاعداد وهي موجبة دائماً

تمارين متنوعة

[١] اكتب المجموعات التالية بطريقة السرد

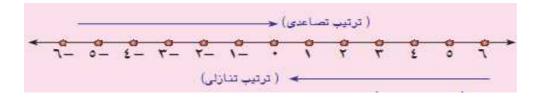
(1) مجموعة الاعداد الصحيحة الاقل من =

(٢) مجموعة الاعداد الصحيحة الاكبر من ٤ =

(٣) مجموعة الاعداد الصحيحة الاقل من ٢ =

(٤) مجموعة الاعداد الصحيحة الاكبر من $-1 = \dots$

(٥) مجموعة الاعداد الصحيحة الاقل من ١ =


(7) مجموعة الاعداد الصحيحة بين $- 3 ، 7 = \dots$

(V) مجموعة الاعداد الصحيحة بين -V ، $V=\dots$

 (Λ) مجموعة الاعداد الصحيحة الاقل من Γ واكبر من Γ

[۲] أكمل ما يأتي = | 0- | (7) = | \(\mathcal{E} - | \) = | \(\) (\) = | 1.7- | (7) = | 17 | (3) = | • | (£) $\dots = |V| + |O-|(A)$ $\dots = | \neg - | \neg \wedge \rangle \qquad \dots = | \neg - | \neg \wedge \rangle$ $\ldots = | \mathbf{r} - | + | \mathbf{r} | (\mathbf{17}) \qquad \ldots = | \mathbf{V} | + | \mathbf{T} - | (\mathbf{11}) \qquad \ldots = | \mathbf{T} - | + | \mathbf{r} - | (\mathbf{11})$ $igl(egin{array}{c} igl(igr) \end{array} igr) igl(igl(igr) igl(igl(igl) igr) igl(igl(igl) igl(igl(igl) igl) igl(igl(igl) igl(igl) igl) igl(igl(igl) igl) igl(igl) igl(igl) igl(igl) igl(igl) igl(igl) igl(ig$ { 9 , £ } (Y) { \(- \) (\(\)) (۳) { ۱ | صهر ~ L 1- (0) (٦) صفر ط ϕ \square ϕ ∇ و ۱۷- ۱۷- ط 1- (1.) { £-, \mathbb{Y} } (11) 1..-(11) $[\ \mathbf{1} \]$ ضع علامة (\mathbf{V}) او علامة (\mathbf{X}) ~ U ~ = ~ (1) (۲) صم هي مجموعة اعداد العد (() (٣) الصفر ∈ صـ (₺) صہ∩ص = (₺) ((٦) الصفر 🗧 🗠 **~** ∋ { 1V− } (**o**) (٨) الصفر هو اصغر عدد صحيح موجب $\emptyset = - \bigcirc \cap \bigcirc \vee$ () [٥] أكمل ما يأتي → ط = $\dots = \square \cap \square \cap \square$ = { · } U, ~ (*) ∪ ا = ط ا ا = **~- ~** (٦) ع - ط = (V) هو اصغر عدد صحیح موجب [٦] مثل على خط الاعداد ۲ ، ۳۰ ، صفر ، ۱۰ ، ۶۰ ، ۵ 2

ترتيب ومقارنة الاعداد الصحيحة

√ معلومات هامة جداً

- 🗷 الاعداد الصحيحة مرتبة تصاعديا كلما اتجهنا من اليسار الى اليمين
- 🗷 الاعداد الصحيحة مرتبة تــنازليا كلما اتجهنا من اليمين الى اليسار
 - اذا كان ١ على يمين ب فإن ١ > ب
 - اذا كان م على يسار ب فإن م > ب

تمارين متنوعة

[١] رتب الاعداد التالية تصاعديا

اولا: ۱،۳،۱- اولا:

ثانیا: ۲ ، –۲۰ ، ۲ ، –۱۷ ، –۲۲ ، صفر

ثالثا : ۹- ، ۱۷ ، ۹- ، ۱۲ ، ۱۲ ،

رابعا: ۳۰ ، ۳۰۰ ، – ۸ ، صفر ، ۱۱

[۲] رتب الاعداد التالية تنازليا

اولا: ۹- ، صفر ، ۷ ، -۱٥

ثانیا: ۱ ، ۱۱ ، ۳ ، ۱۱ ، ۰ ، ۰ ، ٥

[٣] ضع علامة < او > او =

$$Y \dots | \xi - | - (9)$$
 $| 11 \dots | 11 | (A)$ $| \delta \dots | \delta - | (V)$

	<u>تسلسل</u>	[٤] أكمل بنفس ال
	, , , o -	· '- ' '- ()
		(ب) - ۰۰ ، -۰
	, , , , , , , ,	(ج) ۲- ، صفر
	، ، ، ١٦- ، ١	(د) ۱۰۰ (۲۰۰
	, , , •- , 1	·- · \o - (A)
	, , , £ ,	(و) - ٤، صفر
	لصحيحة مما بين الاقواس	[٥] اختر الاجابة ا
[~ , ~ , 1 - , ~]	صور بی <i>ن –۲</i> ، ۳ هو	(۱) عدد صحیح مح
[- ځ ، ۳ ، ۲ ، صفر]	صور بی <i>ن – ځ</i> ، ۲ هو	(۲) عدد صحیح مح
[-٧ ، ٥ ، صفر ، -٦]	صور بی <i>ن −۷ ، صفر هو</i> .	(۳) عدد صحیح مح
[1- , 1 , 7- , 0]	صور بی <i>ن – ۱ ، ٥</i> هو	(٤) عدد صحیح مح
[٦,٥,٤,٣]	صحيحة المحصورة بين ٢٠ ، ٣ يساوى	(٥) عدد الإعداد اأ
[٦,٥,٤,٣]	صحيحة المحصورة بين - ١ ، ٥ يساوى	(7) عدد الاعداد اأ
	المحصورة بين كلا مما يلى :	[٦] أكتب الاعداد
		Y , £- 🗷
		o , 1- 🗷
		🗷 –۷ ، صفر
	لصحيح السابق والعدد الصحيح التالي لكل مما يأتي	[۷] اكتب العدد اأ
		q_ Z
	•••••	, <u>⊾</u>
	••••••	∠ ۱۱ √ صفر
		الخا صفر

جمع وطرح الاعداد الصحيحة

خواص عمليه الطرح في صح:

(1) عملية الطرح مغلقة في صم

(٢) عملية الطرح ليست ابدالية في صح

(٣) عملية الجمع ليست دامجة في صم

خواص عمليه الجمع في صم:

[۱] أوجد ناتج ما يأتى

$$(\delta -) + 7(V)$$

$$(\xi -) + V(17)$$

تمارين متنوعة

$$(11-)-19(10)$$

$$(\Upsilon -) + \delta - (\Upsilon \Lambda)$$

$$(\Upsilon -) - \Upsilon (\Lambda)$$

$$(V-)+\xi(11)$$

$$A + Y - (1V)$$

$igl(egin{array}{c} igl(egin{array}{c} igl(igl) \end{array} igr) \end{array} igl) = igl(igl(igl) igl) igl(igl) igl(igl) igl(igl) igl(igl) igl(igl) igl) igl(igl) igl($

[٣] استخدم الخواص لإيجاد ناتج ما يلي :

$$10 - \lambda + 0 - (1)$$

$$(VV + V \cdot) + VV - (7)$$

$$(1.10-)+1..+1.10(V)$$

[٤] تحقق من خاصية انغلاق الجمع والطرح على المجموعات الاتية

[٥] مسائل لفظية

- (۱) اودع رامى مبلغ قدره ۲۲۲۰ جنيه فى البنك ثم سحب منه ۱۲۱۱ جنيه ثم قام بإيداع ۲۱۱۰ جنيه كم يكون رصيده فى البنك
- (٢) غواصة على عمق ٩٠ متر تحت مستوى سطح البحر ، ارتفعت ٦٠ متر . استخدم العملية الحسابية المناسبة لحساب العمق الجديد للغواصة
- (7) في احدى ليالى الشتاء اشار مذيع النشرة الجوية الى ان درجة الحرارة بالقاهرة $^{\circ}$ م ، وفي موسكو $^{\circ}$ م احسب الفرق في درجات الحرارة بين القاهرة وموسكو ، وبما تنصح المافرين من القاهرة الى موسكو .
 - $^{\circ}$ م الحرارة درجة الحرارة بمدينة سانت كاترين الساعة الثالثة بعد منتصف الليل $^{\circ}$ م بينما في فترة الظهيرة سجلت درجة الحرارة $^{\circ}$ المسب الزيادة في درجة الحرارى

ضرب وقسمة الاعداد الصحيحة

خواص عمليه القسمة في صح:

(١) عملية القسمة ليست مغلقة (ممكنة) في ص

(٢) عملية القسمة ليست ابدالية في صح

(٣) عملية القسمة ليست دامجة في ص

خواص عمليه الضرب في صح:

(١) عملية الضرب مغلقة (ممكنة) في صح

(٢) عملية الضرب ابدالية في صح

(٣) عملية الضرب دامجة في صح

(٤) المحايد الضربي هو الواحد

(٥) خاصية التوزيع

قاعدة الإشارات في القسمة

 $-=-\div+$

 $- = + \div - + = - \div -$

قاعدة الاشارات في الضرب

 $- = - \times + + = + \times +$

 $- = + \times - + = - \times -$

تمارين متنوعة

[۱] او جد ناتج ما يأتي

(£ -) × 0 (1)

(۳) صفر × (- ۱۱)

 $1 \times \Lambda - (7)$

£ - × V- (£) ***** × **7 -** (**0**)

(٦) صفر × (- ٣٦)

Y - × 7 (V) $\xi - \times \circ \circ (9)$ $(\Lambda -) - \times \circ (\Lambda)$

 $(7-)\times(7-)-(17)$ $1 \times V - (11)$

(0 -) × T (1 ·)

[۲] اوجد ناتج ما يأتي

£ ÷ A (1) 7 ÷ 0 £ (T) T ÷ 10 (T)

 $(\Upsilon -) \div \Upsilon \vee (\Upsilon)$ (T-) ÷ £ h (O) 9 ÷ VY (£)

(۹) صفر ÷ (۲۰) $\lambda \div (\ \Upsilon \Upsilon -) (\ \lambda \)$ $(\xi-)\div(\Upsilon^{-})(V)$

[٣] اوجد قيمة س في كل مما يأتي

$$\xi \Lambda - = \omega \times \Lambda (1)$$

$$\xi Y = \omega \times V - (Y)$$

اذا کاننت
$$m = -7$$
 ، $m = -7$ او جد قیمة $m = 7$

اذا کانت
$$m=\Lambda$$
 ، $m=-7$ اوجد قیمة $m-7$ $m=\pm$

اذا کانت
$$m=7$$
 ، $m=-8$ اوجد قیمهٔ $m+7$ س $m+7$

اذا کان
$$\P = \P$$
 ، $\psi = -Y$ او جد قیمة $\P = \P$ ب \P

اذا کان
$$m=T$$
 ، $m=-1$ ع $=-1$ احسب قیمة ما یأتی $[\Lambda]$

[۹] اوجد ناتج ما يلى بطريقتين :

$$[\Upsilon + (\Upsilon -)] \times (\Upsilon -) ()$$

$$\mathbf{q} \times [(\xi -) + \mathbf{V}] \quad (\mathbf{S})$$

$$(11-)\times[(7-)+0](-8)$$

الضرب المتكرر (الأسس)

 $\mathbf{q}^{\circ} = \mathbf{q} \times \mathbf{q} \times \dots$ $\mathbf{q} \times \mathbf{q} \times \mathbf{q}$ $\mathbf{q} \times \mathbf{q} \times \mathbf{q}$ $\mathbf{q} \times \mathbf{q} \times \mathbf{q}$

$$\Lambda = \Upsilon \times \Upsilon \times \Upsilon = {}^{\Upsilon}\Upsilon$$

أمثلة توضيحية

 $\mathsf{A} \mathsf{1} = (\mathsf{Y}^-) \times (\mathsf{Y}^-) \times (\mathsf{Y}^-) \times (\mathsf{Y}^-) = \mathsf{1}^{\mathsf{2}}(\mathsf{Y}^-)$

قواعد الاسس

قاعدة جمع الأسس
$$q^{1} \times q^{0} = q^{1+0}$$

قاعدة طرح الأسس
$$q^{\dagger} \div q^{\dot{\upsilon}} = q^{\dot{\eta} - \dot{\upsilon}}$$

ملاحظات هامة جدا

$$(1)$$
 ای عدد مرفوع 1 س صفر = واحد ای ان

$$P = P$$
 10 اى عدد مرفوع $P = P$ 10 العدد نفسه اى ان $P = P$

تمارين متنوعة

[۱] اوجد قیمة کل مما یأتی (۱) (۵) ۳

¹(Y-) (£)

"(£-)(V)

°(Y) (1Y)

^r(Y-) (Y)

[£](1-)(0)

'(V-) (A)

·(1V-) (11)

⁷(⁷) (1 [£])

⁷(1··) (11)

^r(^r() (^r)

[£](Y-) (Y)

(19)(9)

·(۲0٦-) (10)

[۲] اوجد قيمة كل مما يأتى :

* " × " (T)

[٣] اوجد قيمة كل مما يأتى :

[٤] اوجد قيمة كل مما يأتى

$$\frac{\mathbf{Y}^{r} \times \mathbf{Y}^{e}}{\mathbf{Y}^{r} \times \mathbf{Y}}$$

$$\frac{{}^{\sharp}\Lambda\times{}^{\Psi}(\Lambda-)}{{}^{\Psi}(\Lambda-)}$$

$$\frac{\stackrel{:}{}(\Upsilon^{-}) \times \stackrel{\Gamma}{}(\Upsilon^{-})}{\stackrel{\circ}{}(\Upsilon^{-})} \qquad (\Upsilon)$$

$$\frac{{}^{\mathsf{r}}(\mathsf{q}-)\times{}^{\mathsf{q}}\mathsf{q}}{{}^{\mathsf{r}}\mathsf{q}\times{}^{\mathsf{o}}(\mathsf{q}-)} \quad (\mathbf{1})$$

$$\frac{\circ(\xi)\times''(\xi-)}{\mathsf{''}(\xi)} \quad (\wedge)$$

$$\frac{\text{``}(\text{Y}-)\times\text{`}(\text{Y})}{\text{``}\text{Y}\times(\text{Y}-)}$$

[٥] اختر الاجابة الصحيحة مما بين الاقواس

..... > (o-) (1)

 $\dots = {}^{\mathsf{Y}} {}^{\mathsf{Y}} \times {}^{\mathsf{Y}} {}^{\mathsf{Y}}$

°(1-) '(1-) (T)

`(19) + `(19-) (£)

 $\dots = \frac{1 \cdot 7}{1 \cdot 7} (1-) + \frac{1 \cdot 5}{1 \cdot 7} (1-)$

[°7 , $Y-\times \circ -$, $Y\times \circ -$, °(Y-)]

[77 , 73 , 76 , 777]

 $[\leqslant `` = `` > `` <]$

[- ۱ ، صفر ، ۱ ، ۲]

[صفر، -۱، ۱، ۲]

اذا کان $\P = \Upsilon$ ، ب $= -\Upsilon$ اوجد قیمة :

⁷P 7 (1)

۳ + ۴ ۲ (۲)

(٣) ۲ + ب۲ + ۲ ب

[V] اذا کان [V] ، ب[V] فأوجد : [V]

 $^{\mathsf{T}}$ ، $^{\mathsf{T}}$. $^{\mathsf{T}}$

الانماط العددية

النمط العددى: هو تتابع من الاعداد وفق قاعدة معينة

- [١] اكمل الانماط الاتيه مع وصف النمط
- ، ، ، ۳۸ ، ۳۰ ، ۲۲ ، ۱٤ ، ٦ (١)
- · · · 17 · A · O · 7 · 7 (7)
- (..... (۲۳ (۱۹ (۱٥ (۱۱ (۷ (۳ (٦)
 - $\dots \quad , \quad \dots \quad , \quad \frac{1}{17} \quad , \quad \frac{1}{4} \quad , \quad \frac{1}{7} \quad (\quad \forall)$
 - [۲] اكتشف قاعدة النمط واكمل العدد الناقص
 - , , ١٦ , ١٣ , , ٧ , ٤ (١)
 - , , ۲۳ , ۱۹ , ۱٥ , , ۷ (۲)
 - (.... (9 , 17 , 10 , ($^{\prime\prime}$)
 - (.... (7,0 (, 1 (1 (, 1,0 (£)
- [٣] يدخر شريف ٥١ جنيها كل شهر كم شهرا يحتاجها ليدخر ما يقرب من ١٦٠ جنيها . اكتب النمط العددى المعبر عن ذلك وصفه
- [٤] تستصلح شركة اراضى بصحراء مصر ٦ افدنة فى اليوم الواحد لتصبح صالحة للزراعة . كم يوم يلزم الشركة لاستصلاح مايقرب من ٥٠ فدان ؟ اكتب النمط العددى المعبر عن ذلك وصفه
- [٥] قرر خالد انقاص وزنه بمعدل ٣ كجم شهريا ، اذا كان وزنه الحالى ٩٠ كجم . فكم شهرا يحتاجه من الوقت للوصول الى ٦٩ كجم ؟ اكتب النمط العددى المعبر عن ذلك وصفه .

المعادلات والمتباينات من الدرجه الاولى

الوحدة الثانية

درج لعادلة

هي اكبر اس مرفوع لها الجهول في المعادلة

مثلاً: m + 0 = V (معادله من الدرجة الاولى)

 $m^{7} + m = \Lambda$ (معادله من الدرجة الثانية)

المعادلة: هي علاقة تساوى بين عبارتين رياضيتين

مثال → س + ۳ = ٥

المتباينة: هي علاقة تباين بين عبارتين رياضيتين

مثال ← ک ۲ < ۲ ح

تمارين متنوعة

[١] اختر الاجابة الصحيحة مما بين الاقواس

(۱) ای مما یأتی تمثل معادلة

(۲) ای مما یاتی تمثل متباینه

$$[\ 0 + \omega = 1 \lor -\omega \ , \ w = 0 \lor \]$$

المعادلة $m^7 + m = 3$ من الدرجة

[الاولى ، الثانية ، الثالثة ، الرابعة]

المعادلة m + o = V من الدرجة

[الاولى ، الثانية ، الثالثة ، الرابعة]

 (\circ) المعادلة % س % = % = % من الدرجة

[الاولى ، الثانية ، الثالثة ، الرابعة]

[٢] اوجد مجموعة الحل لكل من المعادلات الاتية :

اذا كانت مجموعة التعويض هي { ٣ ، ٥ ، ٧ ، ٨ }

۱۲ = ۵ + س (۱)

اذا كانت مجموعة التعويض هي { ٢ ، ٣ ، ٤ }

۹ = ۳ - س ٤ (٣)

اذا كانت مجموعة التعويض هي { - ٢ ، ٢ ، ٣ ، ٥ }

۲ (۲) س + ۶ = ۱۶

اذا كانت مجموعة التعويض هي { ٣ ، ٠ ، - ١ ، ١ }

 $Y-=1-\overline{(\xi)}$

[٣] اوجد مجموعة الحل لكل من المعادلات الاتية :

$$\mathbf{o} = \mathbf{v} + \mathbf{w} (\mathbf{r})$$

$$1-=V-mY(T)$$

$$0-=1+m \Upsilon(\xi)$$

$$\{ V, T, O, \{ \xi \} \}$$
 (0) $\{ V, T, O, \{ \xi \} \}$ (1) $\{ V, T, O, \{ \xi \} \}$

[٤] اوجد مجموعة الحل لكل من المتباينات الاتية

$$T < T - \omega$$
 (T)

[٤] اوجد مجموعة الحل لكل من المتباينات الاتية

$$\xi > 1 + \omega - (T)$$

حل المعادلات من الدرجة الاولى

خواص علاقة التساوى

(١) خاصية الاضافة والجذف

(٢) خاصية الضرب والقسمة

تمارين متنوعة

[١] اوجد مجموعة الحل لكل من المعادلات الاتية في ط :

$$19 = \lambda + \omega (Y)$$

$$YY = V + \omega (Y)$$

$$A = 10 - J \Upsilon (1)$$

$$\Upsilon \Upsilon + m = T m + \Gamma \Upsilon$$

$$\Upsilon 1 = \xi + (\Upsilon + \omega \xi) (1\xi)$$

$$1 \wedge + m = 7 + m + 1 \wedge m + 1$$

$$10 = 0 + (1 - \omega)$$
 (17)

$$\mathsf{TV} = \mathsf{W} + \mathsf{W} +$$

[۲] اوجد مجموعة الحل لكل من المعادلات الاتيه في سح

$$\xi \cdot = 17 - \omega (7)$$

$$\Upsilon = \Upsilon - \omega$$
 (1)

$$7 = 17 - \omega (£)$$

$$1 \Lambda = 77 - \omega (\Upsilon)$$

$$\Lambda + \omega = 7 - \omega \pi (17)$$

$$Y = 0 - \omega Y (11)$$

$$Y - = V - (\omega - 1) \Upsilon (1\xi)$$

$$17 = 0 + (1 - w)$$
 (17)

$$Y - = \frac{Y - \omega}{\xi}$$
 (17)

تطبيقات على حل المعادلة من الدرجة الاولى

مفتاح حل الاسئله						
س + مقدار الزياده	یزید علی بمـقدار	س + العدد	عدد اضيف اليه			
س ، س + ۲	عددان زوجيان	۲ س	ضعف العدد			
س ، س + ۲	عددان فرديان	٣ س	ثلاثة امثال العدد			
س ، س + ۱ ، س + ۲	ثلاثة اعداد متتالية	٤ س	اربعة امثال العدد			
س ، س + ۲ ، س + ٤	ثلاثة اعداد فرديه	س ، س + ۲ ، س + ۶	ثلاثة اعداد زوجيه			

- [۱] ما العدد الذي اذا اضيف اليه ٤ كان التاتج ١٤
- [۲] عدد اذا اضيف الى ضعفه ٩ كان الناتج ٥٥ اوجد العدد
 - [٣] ما العدد الذي اذا اضيف اليه ضعفه كان الناتج ٣٦
- [٤] عدد اذا اضيف الى ضعفه كان الناتج ٢٧ . اوجد العدد
 - [٥] عددان زوجيان متتاليان مجموعهما ٣٠ اوجد العددين
 - [٦] عددان فردیان متتالیان مجموعهما ١٦ اوجد العددین
- [۷] عددان صحيحان متتاليان مجموعهما -٧٧ اوجد العددين
- [٨] عددان صحيحان احداهما ضعف الاخر ومجموعهما ٥٤ اوجد العددين
 - [٩] ثلاثة اعداد طبيعية متتالية مجموعها ٢٧ اوجد هذه الاعداد

- [١٠] ثلاثة اعداد فرديه متتاليه مجموعها ١٢٩ . اوجد الاعداد الثلاثه
- [11] ثلاثة اعداد زوجيه متتاليه مجموعها ٢٤. اوجد الاعداد الثلاثه
- [١٢] ثلاثة اعداد زوجيه متتاليه مجموعهم ١٨ كون المعادله المعبره عن ذلك واوجد الاعداد الثلاثه
 - [١٣] عدد مكون من رقمين احاده ضعف عشراته ومجموع الرقمين ١٢ فما العدد ؟
- [12] اذا كان عمر ياسر يزيد على عمر هانى بمقدار ثلاث سنوات وفى العام القادم يصبح مجموع عمريهما 13 ما عمر كل منهما الان ؟
 - [10] اذا كان عمر رجل ثلاثة امثال عمر ابنه ، مجموع عمريهما ٧٧ سنه فما عمر كل منهما
- [17] اذا كان عدد تلاميذ الصف السادس الابتدائي بإحدى المدارس ١٢٠ تلميذ وكان عدد البنات ثلاثة امثال عدد البنين . احسب عدد البنين و البنات
- [۱۷] اذا كان عدد الاميين بأحدى قرى الريف المصرى ۳۲۰۰ امى ، وكان عدد الاناث ثلاثى اضعاف عدد الذكور احسب عدد الذكور والاناث
- [۱۸] يريد رجل ان يقسم مبلغا من المال قدره ۰۰۰۰ جنيه بين ابنائه الثلاثه (بنت وولين) فإذا كان نصيب الولد ضعف نصيب البنت . اوجد نصيب كل من البنت والولد
 - [19] مستطيل عرضه نصف طوله ومحيطه ٣٦ سم . اوجد طول وعرض المستطيل
 - [٢٠] مستطيل طوله ثلاثة اضعاف عرضه ومحيطه ٦٤ سم اوجد طول وعرض المستطيل
- [٢١] مستطيل طوله يزيد عن عرضه بمقدار ٣ سم فإذا كان محيط المستطيل ٢٢ سم احسب طول وعرض المستطيل
- [۲۲] متوازى مستطيلات مجموع ابعاده الثلاثة ١٨ سم . فإذا كان طول قاعدته ثلاثة امثال عرضها وارتفاعه ضعف عرض قاعدته . احسب اطوال ابعاده الثلاثة

حل المتباينه من الدرجة الاولى

<u>خواص علاقة التساوي</u>

(١) خاصية الاضافة والحذف

(٢) خاصية الضرب والقسمة

ملحوظه: عند الضرب اوالقسمة على عدد سالب فإننا نغير اتجاه علامة التباين

تمارين متنوعة

[١] او جد مجموعة حل المتباينات الاتيه في ط ومثل على خط الاعداد

$$1 > \pi - m(Y)$$
 $1 > \xi + m(Y)$

$$1 > 9 + \omega + (£)$$
 $V > W + \omega + (Y)$

$$17 \leqslant 7 + \omega + (7)$$
 $0 \geqslant 1 + \omega + (7)$

[٢] اوجد مجموعة حل المتباينات الاتيه في صح ومثل على خط الاعداد

$$0 > \Psi - W + (Y)$$
 $1 > 9 + W + (Y)$

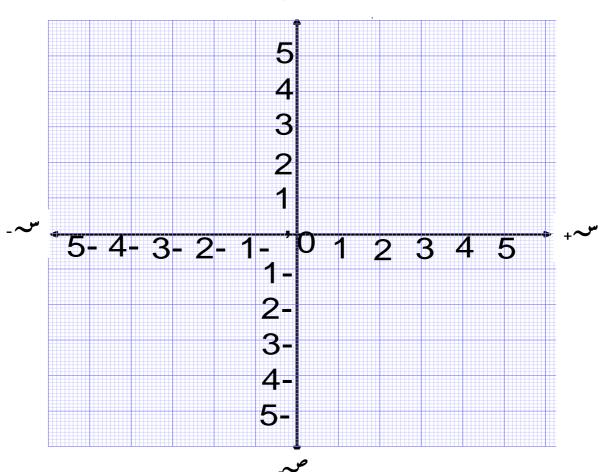
$$1 \% > 1 + \omega$$
 ($\%$) $\% = 0$ ($\%$)

$$\Upsilon + 0 \geqslant V - m \qquad (\Upsilon)$$

$$0 < (W + W + V)$$

$$9 \geqslant 1 - \omega + 7 \geqslant 7 \omega + 11$$

$$17 > 7 + 10 > 1 - (17)$$
 $0 > 7 + 10 > 1 - (11)$


$$m{(1)}$$
 العدد الذي يحقق التباينه س $m{(1)}$ هو

$$[2-1, 1-1, -1]$$
 هيع الاعداد التالية تحقق المتباينه س $= -1$ ماعدا

مستوى الاحداثيات للأعداد الصحيحه

الوحدة الثالثه

ستوى الاحداثيات للأعداد الصحيحه تتكون من محورين

- (١) محور افقى : محور السينات
- (۲) محور رأسي : محور الصادات

كل نقطه تمثل زوج مرتب (س، ص)

س ___ الاحداثي الاول

ص___ الاحداثي الثابي

- [۱] على المستوى الاحداثي حدد موضع النقاط التاليه ل (-۱ ، ۱) ، م (۱ ، ۱) ، ن (۱ ، ۸)

 هـ (-۱ ، ۸) ثم اوجد (۱) محيط ومساحة الشكل ل م ن هـ (۲) هل الشكل متماثل ، ولماذا ؟
- [۲] حدد في المستوى الاحداثي كل من النقاط التاليه (۲ ، ۳) ، ب (٤ ، ۳) ، ج (٤ ، ۷) ثم اوجد (۲) ب جــ = ، (۲) مساحة ألم ب جــ الله المنافع الم

التحويلات الهندسيه - الانتقال

تحول كل نقطه (في المستوى الى نقطة (في نفس المستوى

التحويله الهندسيه

انواع التحويلات الهندسيه

۱ – انعکاس

۲ – انتقال

۳ – دوران

🗹 يتوقف الانتقال على :

(١) مقدار الانتقال

(٢) اتجاه الانتقال

🗹 صورة الانتقال = صورة النقطه + الانتقال

- [١] اكمل ما يأتى :
- (۱) صورة النقطه (٥ ، ٠) بالانتقال (۱ ، –٥) هي
- (۲) صورة النقطه (-۱ ، ۳) بالانتقال (-۲ ، ۳) هي
- (٣) صورة النقطه (٢ ، -٥) بالانتقال (٢ ،) هي
- (٤) صورة النقطه ٩ (− ٤ ، ٣) بالانتقال (¬١ ، −٤) هي
- [۲] النقطه (۹ ، ب) صورهما (٥ ، -٤) بأنتقال (۲ ، -٣) فما احداثي النقطة (۹ ، ب)
- [π] او جد صورة القطعة المستقيمة \P ب حيث \P (π ، π) ب (π ، π) بالانتقال (π + π ، π ، π)
 - [٤] فى المستوى الاحداثي حدد النقاط (٣ ، ٤) ، ب (۱ ، ٤) ، ج (۱ ، ۲) ثم اوجد صورة
 المثلث (ب ج بالانتقال (۰ ، ٣)
 - [٥] ارسم المثلث (ب جـ حيث (، ، ۱) ، ب (۲ ، ۳) ، جـ (۱ ، ٤) ثم اوجد صورته بالانتقال (س + ۲ ، ص + ۳)
- [7] في المستوى الاحداثي ارسم المستطيل (ب جـ د حيث (؛ ١) ، ب (؛ ٣) ، جـ (١ ، ٣) د (١ ، ١) . ثم اوجد صورته بالانتقال (س + ٣ ، ص + ٣)

مساحة الدائرة

نوانين الدائرة

محيط الدائرة = ٢ ط نق

مساحة الدائرة = ط نق 7

- $(\frac{77}{V})$ دائرة قطرها ۱۶ سم . احسب مساحة سطحها $(\frac{7}{V})$ او $(\frac{7}{V})$
- - (7, 1) = (4 + 1) دائرة نصف قطرها 3 + 1 = (4 + 1)
 - (٤) دائرة قطرها ١٤ سم . احسب مساحة سطحها ومحيطها
- $(\frac{\gamma}{\gamma})$ دائرة محیطها ۸۸ سم . احسب مساحة سطحها ($\frac{\gamma}{\gamma}$ او $\frac{\gamma}{\gamma}$
- (7) دائرة محیطها 7,1 سم . احسب مساحة سطحها (4 = 2,1,7) او $\frac{77}{7}$
 - $(\frac{\gamma}{\sqrt{\gamma}})$ دائرة مساحتها γ ۳۱ سم ۱ . احسب محیطها (γ او γ
 - (٨) دائرة مساحة سطحها ٦١٦ سم٢ . احسب محيطها
 - (9) دائرة مساحتها ۱۲۵٦ سم۲ . اوجد محیطها (4 = 2) ۲ دائرة مساحتها

المساحة الجانبية والكلية

قوانين حل المسائل			
متوازى المستطيلات	المكعب		
المساحة الجانبية = محيط القاعدة × الارتفاع	المساحة الجانبية = مساحة وجه واحد × ٤		
المساحة الكلية = المساحة الجانبيه + مساحة القاعدتين	المساحة الكلية = مساحة وجه واحد × ٦		

تمارين متنوعة

اولا : اسئلة المكعب

- ١) مكعب طول حرفه ٦ سم . اوجد مساحته الجانبية ومساحته الكلية
- مكعب طول حرفه Λ سم . احسب النسبة بين مساحته الجانبية ومساحته الكلية
- ٣) مكعب مجموع اطوال احرفه ٨٤ سم . اوجد مساحته الجانبية ومساحته الكلية
- ٤) مكعب مجموع اطوال احرفه ٧٢ سم . احسب مساحته الجانبية ومساحته الكلية
- (٥) مكعب مجموع اطوال احرفه ١٠٨ سم . احسب مساحته الجانبية ومساحته الكلية ثم اوجد النسبة بينهما
 - (٦) مكعب محيط قاعدته ٢٨ سم . احسب مساحته الجانبية ومساحته الكلية
 - (٧) مكعب مساحته الجانبية ٣٦ سم٢. احسب مساحته الكلية
 - (٨) مكعب مساحته الكلية ٧٢٦ سم٢ . احسب مساحته الجانبية
 - (٩) مكعب مساحته الكلية ٤٨٦ سم٢ . احسب مساحته الجانبية
 - (۱۰) خزان للمياه على شكل مكعب طول حرفه من الداخل ١,٥ متر ، يراد طلائه بمادة تمنع الصدأ تكلفة المتر المربع ١٥ جنيه . احسب تكلفة دهان الخزان

ثانیا: اسئلة متوازی المستطیلات

- (١) متوازى مستطيلات طوله ٦ سم وعرضه ٤ سم وارتفاعه ٨ سم اوجد مساحته الجانبية ومساحته الكلية
 - (۲) مكعب طول حرفه ۱۰ سم ومتوازى مستطيلات طوله ۸ سم ، وعرضه ٥ سم ، وارتفاعه ۱۷ سم او جد الفرق بين المساحتين الجانبيتين لكل من المكعب ومتوازى المستطيلات
- (٣) علبه بدون غطاء طولها ١٦ سم ، وعرضها ٧ سم ، وارتفاعها ١٩ سم احسب مساحتها الجابيه والكليه
- (٤) علبه على شكل متوازى مستطيلات قاعدتها على شكل مربع طول ضلعه ٩ سم ، فإذا كان ارتفاع العلبه ٢٠ سم احسب كلا من : مساحتها الجانبيه ومساحتها الكليه
 - (٥) حجرة على شكل متوازى مستطيلات ابعادها من الداخل ٥ متر ، ٣,٥ متر ، ٣ متر يراد طلاء جدرالها الجانبية فقط بدهان تكلفة المتر المربع ٩ جنيه . احسب التكاليف اللازمة لذلك
 - (٦) حجرة طولها ٥ متر وعرضها ٤ متر وارتفاعها ٣,٢ متر يراد طلاء جدرانها وسقفها بدهان تكلفة المتر المربع ٨ جنيهات احسب التكاليف – علما بأن الغرفه بما فتحات (٢ شباك وباب) مساحتها ٨ م٢
 - (۷) صندوق لسيارة نقل على شكل متوازى مستطيلات ابعاده من الداخل ٥ متر ، ٢,٥ متر ، ١,٦ متر يراد طلائه من الداخل بدهان تكلفة المتر المربع ١٢ جنيه . احسب تكاليف الدهان
 - (A) حاويه لنقل البضائع على شكل متوازى مستطيلات ابعادها ن الداخل ٤ م ، ٢,٥ م ، ١,٨ م ، يراد تغطية جوانبها وسقفها بنوع من الصاج ثمن المربع ١٥ جنيه احسب ثمن الصاج اللازم لذلك
 - (٩) حمام سباحه ابعاده من الداخل ٣٠ متر ، ١٠ متر ، ١,٥ متر يراد تغطيته ببلاط سيراميك مربع الشكل طول ضلع البلاطه ٢٠ سم ، فإذا كان سعر المتر المربع ٣٢ جنيه . احسب التكاليف اللازمه لتغطية الحمام
 - (١٠) متوازى مستطيلات مساحته الكليه ١٣٢ سم٢ ومساحته الجانبيه ١١٢سم٢ احسب مساحة قاعدته
 - (11) متوازی مستطیلات محیط قاعدته ۳۲ سم وارتفاعه ۱۰ سم وطول قاعدته ۹ سم . احسب مساحته الجانبیه ومساحته الکلیه

الاحصاء - القطاعات الدائرية

الوحدة الرابعة

🗹 القطاع الدائري : هو جزء من سطح الدائرة محصور بين نصفي قطرين وقوس فيها

☑ مجموع قیاسات الزوایا المتجمعه حول نقطه = ۳٦٠٥

تمارين متنوعة

[١] الجدول التالي يوضح نسب انتاج احد المصانع لأربعة انواع من الاجهزة الكهربائية

بوتاجاز	ثلاجة	غسالة	تليفزيون	نوع الجهاز
% * •	% 10	% ۲0	% 40	نسبة الانتاج

مثل تلك البيانات بالقطاعات الدائرية

[٢] الجدول التالى يوضح نسب عدد الطلاب المشاركين في الانشطة المدرسية

الفنى	الاجتماعي	الرياضي	الثقافي	النشاط
% 40	% 10	% \$0	% o	نسبة الانتاج

مثل تلك البيانات بالقطاعات الدائرية

[٣] الجدول التالى يبين نسب انتاج الدواجن لأربع مزارع خلال شهر

الرابعة	الثانية الثالثة		الاولى	المزرعة
	% ٣.	% 40	% 1.	نسبة الانتاج

(١) اكمل الجدول السابق

(٢) مثل تلك البيانات بالقطاعات الدائرية

[٤] الجدول التالي يبين نسب انتاج مصنع للأدوات الكهربائية المترلية

خلاط	بوتاجاز	سخان	غسالة	المزرعة
% 10	% .	% 10	% ٣.	نسبة الانتاج

مثل تلك البيانات بالقطاعات الدائرية

[٥] الجدول التالي يوضح البرامج التلفزيونية المفضلة التي يشاهدها تلاميذ الصف السادس

رياضي	درامي	اخبارى	ثقافي	ترفیهی	البرنامج
11	٧	٤	٥	٩	عدد التلاميذ

مثل تلك البيانات بالقطاعات الدائرية

[7] اذا كانت احدى الاسر تنفق راتبها الشهرى كالأتى : ٠٠ % للطعام ، ٢٠ % للمسكن ، ٣٠ % مصروفات وتدخر الباقى . مثل تلك البيانات بالقطاعات الدائرية

25

التجربة العشوائية

التجربة العشوائية: هي تجربة يمكن معرفة نتائجها قبل اجرائها

فضاء العينة: هي مجموعة كل نواتج التجربة العشوائية

أمثلة متنوعه

فضاء العينة	التجربة العشوائية
ف = { ص ، ك }	القاء قطعة نقود مرة واحدة
ف = { ۲ ، ۲ ، ۳ ، ۲ ، ۵ ، ۲ }	القاء حجر نرد مرة واحدة
ف = { فوز ، هزيمة ، تعادل }	مبارة كرة قدم بين فريقك وفريق اخر

- [۱] اذا كانت التجربة العشوائية هي زيارة احد اقاربك لمعرفة جنس المولود الذي وضعته زوجته اكتب فضاء العينة لهذه التجربة
- [۲] اذا كانت التجربة العشوائية هي سحب كره واحدة من صندوق به ثلاث كرات حمراء واربع كرات صفراء اكتب فضاء العينة لهذه التجربة
 - [٣] في تجربة القاء حجر نرد على ان يكون عدد النقاط بالوجه العلوى عددا فرديا . اكتب فضاء العينة
- [٤] اذا كانت التجربة العشوائية هي سحب كره من صندوق به اربع كرات (حمراء صفراء خضراء زرقاء) اكتب فضاء العينة لهذه التجربة
 - [٥] اذا كانت التجربة العشوائية هي الحصول على عدد مكون من رقمين هما (٢ ، ٣) . اكتب فضاء العينة
 - [٦] في تجربة القاء حجرى نرد على ان يكون مجموع النقاط بالوجهين العلويين ٧ . اكتب فضاء العينة
 - [٧] اذا كان التجربة العشوائية هي القاء قطعتي نقود مختلفتين مرة واحدة . اوجد فضاء العينة

الاحتمال

✓ العدت: هو مجموعة جزئية من فضاء العينة

$$\frac{(i)}{(i)} = (i)$$
نانون مساب الاحتمال (i)

انواع الحدث

تمارين متنوعة

[١] في تجربة القاء حجر نرد مرة واحدة وملاحظة العدد الظاهر على الوجه العلوى . اكتب فضاء العينة

ثم اوجد احتمال:

- (١) الحدث ١ حيث ١ هو ظهور عدد زوجي
- (۲) الحدث ب حیث ب هو ظهور عدد فردی
- (٣) الحدث جـ حيث جـ هو ظهور عدد اقل من ٣
- (٤) الحدث د حيث د هو ظهور عدد اكبر من ٦
- (٥) الحدث هـ حيث هـ هو ظهور عدد اقل من ٧

[٢] سلة بما ١٥ كرة مرقمة من ١ الى ١٥ سحبت كرة واحدة عشوائيا – اكتب فضاء العينة . ثم اوجد احتمال

ان تكون الكرة المسحوبة:

- (١) تحمل عددا فرديا
- (٢) تحمل عددا اوليا
- (٣) تحمل عددا يقبل القسمة على ٣

(۲) سحب کرة هراء (٣) سحب كرة ليست بيضاء او همراء [٤] اذا كانت التجربة الاحتمالية هي سحب بطاقه عشوائيا من ٧ بطاقات مكتوب عليها الارقام من ١ الي ٧ اكتب فضاء العينة - ثم اوجد احتمال (١) الحدث ١ حيث ١ هو ظهور عدد اقل من ٤ (۲) الحدث ب حيث ب هو ظهور عدد فردى (٣) الحدث جـ حيث جـ هو ظهور عدد اكبر من ٥ [٥] صندوق به ٨ كرات بيضاء ، ١٢ كره حمراء ، جميعها متماثلة سحبت كرة واحده عشوائيا من الصندوق احسب احتمال: (١) الكرة المسحوبة بيضاء (٢) الكرة المسحوبة زرقاء [٦] صندوق به ٥ كرات بيضلء ، ٨ كرات حمراء . سحبت كرة واحدة دون النظر اليها فما احتمال ان تكون الكرة المسحوبة ا - خضراء ب – ليست حمراء [٧] صندوق يحتوى على ٢٥ كرة ملونه ١٣ حمراء ، ١٢ خضراء . فإذا تم سحب كرة من الصندوق عشوائيا احسب احتمال (١) الحدث ١ حيث ١ الكرة حمراء (۲) الحدث ب حيث ب الكرة صفراء

28

[٣] صندوق به ٦ كرات بيضاء و ٦ حمراء تم سحب كره عشوائيا . اكتب فضاء العينة – ثم اوجد احتمال :

(۱) سحب کرة بیضاء

[٨] صندوق يحتوى على ١٠ بطاقات مرقمة بأعداد زوجيه من (٢ الى ٢٠) فإذا تم سحب بطاقة عشو ائيا احسب احتمال: (١) الحدث ٩ حيث ٩ ظهور مضاعفات العدد ٤ (۲) الحدث ب حيث ب ظهور عدد زوجي (٣) الحدث ج حيث ج عدد يقبل القسمة على ٣ [٩] في تجربة القاء حجر نرد مره واحدة وملاحظة العدد الظاهر على الوجه العلوى اكتب فضاء العينة – ثم اوجد احتمال الحدث (حيث (﴿ حِيث [١٠] في تجربة القاء حجر نرد مره واحدة وملاحظة العدد الظاهر على الوجه العلوي – اوجد احتمال: (١) الحدث ١ حيث ١ ظهور عدد اقل من ٥ (۲) الحدث ب حیث ب ≥ ۳ [11] في تجربة القاء حجر نرد مره واحدة وملاحظة العدد الظاهر على الوجه العلوي – اوجد احتمال: (١) الحدث ١ حيث ١ ظهور عدد اقل من ٤ ٦ > ب > ١ الحدث ب حيث ب تحقق المتباينه [١٢] في تجربة تكوين عدد من رقمين هما { ٥ ، ٦ } . احسب احتمال (١) الحدث ١ حيث ١ رقم الاحاد فردى (٢) الحدث ب حيث ب مجموع الرقمين ١١ (٣) الحدث جـ حيث جـ الرقمان متساويان [١٣] في تجربة تكوين عدد من رقمين هما { ٣ ، ٥ } – احسب احتمال (١) الحدث ٢ حيث ٢ رقم الاحاد يساوى رقم العشرات (۲) الحدث ب حيث ب رقم العشرات فردى (٣) الحدث جـ حيث جـ رقم الاحاد زوجي 29

الواجبات اطنزليه

االوحدة الأولى

صہ	الصحيحة	الاعداد	:	الاول	الدرس
----	---------	---------	---	-------	-------

- (١) مجموعه الاعداد الصحيحة الاكبر من -٢
 - (٢) مجموعة الاعداد الصحيحة الاقل من ٤
- (T) مجموعة الاعداد الصحيحة المحصوره بين -T
- (٤) مجموعة الاعداد الصحيحة الاكبر من -٥ و اقل من ٢
- (٥) مجموعة الاعداد الصحيحة الاكبر من ١ و اقل من ١
- (٦) مجموعة الاعداد الصحيحة الاكبر من ١ و اقل من صفو

\supset 91 \supset	∈ او ∉ او	ضع الرمز	[7]
ナノー	1 + 1 -	J J (-1	L ' J

- **{•}**(*****)
- ره) ۱- (ه)
- $\bigcup \phi(\mathbf{v})$
 - ر ۹) | ۱۸۰ | ط

- {0, \(\) \(\)
- { ٣- } (٤)
- (٦) صفر

- { V-, Y } (11)

(

)

["] ضع علامة $(oldsymbol{\sqrt{\vee}})$ او علامة $(oldsymbol{\times})$

- (١) -ه ∈ ط
 - ~ 9 = $\{ 19 \} (7)$
- (٣) الاعداد الصحيحة السالبة هي صم_
 - (٤) الاعداد الصحيحة غير الموجبة هي صب
 - (٥) الصفر هو اصغر عدد صحيح موجب
 - (٦) الصفر هو اكبر من اى عدد صحيح سالب
-)
 - [٤] اكتب المعكوس الجمعي لكل من الاعداد التالية
- (ب) ۱۷– (ب) (د) صفر (جـ) ۱۲۳
 - [٥] مثل على خط الاعداد كل من الاعداد التالية
 - ۷ ، ۲۰ ، صفر ، ۱۰ ، ځ

الدرس الثانى: ترتيب ومقارنة الاعداد الصحيحة
[١] رتب الاعداد التالية ترتيبا تصاعديا
(۱) ۱۳ ، ۹۰ ، صفر ، ۵۰ ، ۸ ، ۱۰
(۲) ۱۹ ، ع ، -ه ، صفر ، ۱۹ ، ۳۰
[۲] رتب الاعداد التالية ترتيبا تنازليا
17- , 0 , 1- , 7 , 1- , 1)
(۲) ۵ ، ۷۰ ، ۹۰ ، صفر ، ۱۰ ، ۶
[٣] ضع علامة < او > او =
o
V
٥) صفر 🔲 اه ا – (٦)
Λ
۹ ا ا ا ۱۰) صفر ۱۰۱) صفر ۱۰۱
[٤] اكمل ما يأتي
· · £- · £- · \ \- (\ \

الدرس الثالث: جمع وطرح الاعداد الصحيحة

او جد ناتج ما یأتی $(\ \) + \lambda$

$$(\delta-)+\Lambda(1)$$

$$(7-)+7(11)$$

(9-)+(90-)(7)

(٥) (٩-) + صفر

$$(7-)-\xi-(17)$$

- { ٣-, ٢ } ۸ – ۸ (۳)
 - □ + | V- | (•)

| | V- | + | q- | (~)

{ -} ()

$$\sim \qquad \qquad \frac{\pi}{\circ} \quad (\forall)$$

[٣] تحقق من خاصية انغلاق الجمع والطرح على المجموعات الاتية

[٤] استخدم الخواص لايجاد ناتج

الدرس الرابع: ضرب وقسمة الاعداد الصحيحة

$$\frac{[\ 1\]}{(\ 1\)}$$
 او جد ناتج ما يأتى \times

[۲] او جد ناتج ما يأتي (۱) ۲ (۲ ÷ ۲

(T-) ÷ 10 (T)

اذا کانت
$$m = 7$$
 ، $m = -1$ ، ع $m = 7$ او جد قیمة کل مما یأتی $m = 7$

$$7 \cdot \xi - = \omega \times 7 \quad (1)$$

$$\mathbf{17-}\times(\mathbf{0}\times\mathbf{9-})=(\mathbf{17-}\times\mathbf{0})\times\mathbf{0}$$

الدرس الخامس : الضرب المتكرر

[۱] او جد قیمة ما یأتی (۱) (۳-)

$$\frac{^{}^$$

$$\frac{\mathsf{T}(\mathsf{Y}-)\times\mathsf{P}(\mathsf{Y}-)}{\mathsf{T}(\mathsf{Y}-)}$$

اذا کانت $\mathbf{q} = \mathbf{q}$ ، $\mathbf{v} = -\mathbf{r}$ او جد قیمة ما یأتی

الدرس السادس: الإنماط العددية
[١] اكمل الانماط العددية الاتية
· · · · · · · · · · · · ·
((9 , 7 , 7 , 1)
, .
· ·
[٢] اكتشف قاعدة النمط واكمل العدد الناقص
((11 (9 ((0 (7 (1)
() ٤ () ٦ () ٨ (() ٢ ()
[٣] يدخر (احمد) ٤٢ جنيها كل شهر . كم شهرا يحتاجها ليدخر ما يقرب من ١٣٠ جنيها
[٤] اكتب عدد المثلثات اسفل كل شكل واكتب النمط العددى ووصفه
عدد المثلثات
النمط العددى
وصف النمط

الوحدة الثانيث

الدرس الاول : المعادلات والمتباينات من الدرجة الاولى

[١] اكمل ما يأتى :

(۱) المعادلة هي جملة رياضية

(۲) المتباينة هي جملة رياضيه

(۳) مجموعة التعويض هي

(٤) مجموعة الحل هي

ره) المعادلة س $\Upsilon + \Upsilon = 3$ من الدرجة

المعادلة γ س $- 9 = \gamma$ من الدرجة

[٢] او جد مجموعة الحل لكل من المعادلات الاتيه

اذا كانت مجموعة التعويض هي { ٢ ، ٣ ، ٤ } 0 = 1 = 0 (1)

(۲) ۲ س = ۳ = ۱۵ اذا كانت مجموعة التعويض هي { ٤ ، ٥ ، ٦ ، ٧ }

 $\{\Lambda, V, T\} = (M-1)$ (M) $\{\Lambda, V, T\} = (M-1)$

[٣] اوجد مجموعة الحل لكل من المتباينات الاتية

اذا كانت مجموعة التعويض هي { ٣ ، ٢ ، ١ ، صفر } $V > 0 + \omega (1)$

٣ < ٤ + س + ٢ (٢)

اذا كانت مجموعة التعويض هي { -١ ، صفر ، ١ ، ٢ }

اذا كانت مجموعة التعويض هي { - ٢ ، - ١ ، صفر ، ١ } (۳) ۳ س ۱۰ > - ٤

الدرس الثاني : حل المعادلة من الدرجة الاولى

[١] اوجد مجموعة حل المعادلات التالية في ط

$$q = r + \omega (1)$$

$$V = V - \omega (Y)$$

$$\Upsilon = \pounds + \omega (\Upsilon)$$

[۲] اوجد مجموعة حل المعادلات التالية في ص

$$(V) \quad \forall \quad (V) \quad (V) \quad (V)$$

$$\Psi - = \frac{\xi - \omega}{\delta} (\Lambda)$$

```
الدرس الثالث: تطبيقات على حل المعادلات من الدرجة الاولى
                                                   ( 1 ) عدد اذا اضيف اليه ٣ كان الناتج ٧ . اوجد العدد
                                            ( ۲ ) عدد اذا اضيف الى ضعفه ۸ كان الناتج ۲۰ . او جد العدد
                                                (٣) عددان فرديان متتاليان مجموعهما ١٢. اوجد العددين
                                               (٤) عددان زوجيان متتاليان مجموعهما ١٤ . اوجد العددين
                                              (٥) ثلاثة اعداد طبيعيه متتالية مجموعها ٢٤ . اوجد الاعداد
                                               (٦) ثلاثة اعداد فردية متتالية مجموعها ٢١. اوجد الاعداد
                                              (٧) ثلاثة اعداد زوجيه متتاليه مجموعها ٤٨. اوجد الاعداد
                   ( ٨ ) اذا كان عمر رجل ثلاثة امثال عمر ابنه ، مجموع عمريهما ٦٨ سنه . فما عمر كل منهما
( ٩ ) اذا كان عدد تلاميذ الصف السادس الابتدائي في احدى المدارس هو ١٦٠ تلميذ وتلميذه. وكان عدد البنات
                                                  ثلاثة امثال عدد البنين . احسب عدد البنين والبنات
                        (١٠) مستطيل طوله ثلاثة اضعاف عرضه ومحيطه ٥٦ سم . اوجد طول وعرض المستطيل
```

الدرس الرابع: حل المتباينة من الدرجة الاولى

[١] اوجد مجموعة حل المتباينات التالية في ط – ومثل على خط الاعداد

$$1 > 1 + \omega (1)$$

$$Y \geqslant 1 - \omega (\Upsilon)$$

[٢] اوجد مجموعة حل المتباينات التالية في صح – ومثل على خط الاعداد

$$1 > T - m T (T)$$

$$11 > 0 + m T (T)$$

$$V \geqslant Y + \omega > \Psi(0)$$

الوحدة الثالثث

الدرس الاول والثانى: مستوى الاحداثيات - الانتقال

- (۱) على المستوى الاحداثي حدد موضع النقاط التالية (۲ ، ۳) ب (۲ ، ۳) جـ (۲ ، ۳)
 - د (۲- ، ۳) ثم اوجد
 - (P) محیط الشکل P ب جـ د
 - (ب) مساحة الشكل (ب ب جد د
- (۲) اوجد صورة القطعة المستقيمة ¶ ب حيث ¶ (¬٣ ، ١) ب (۰ ، ٣) بالانتقال (س + ۲ ، ص +٣)
- (٣) على المستوى الاحداثي حدد موضع النقاط التالية (٢،٣) ب (٤،٣) جـ (٤،٧) ثم اوجد صورة المثلث (ب ب جـ بالانتقال (ب، -٤)
 - (٤) ارسم المثلث (ب ج ، حيث ((۱ ، ۱) ، ب (۳- ، ۱) ، ج (۰ ، ۱ ۵) ثم اوجد صورته بالانتقال (۵ ، ۰) على الرسم
- (٥) على المستوى الاحداثي حدد موضع النقاط التالية (٣) (٣) ب (٦، ١) جـ (٢، ٦) ثم اوجد صورة المثلث (ب جـ بالانتقال (س-٣، ص + ٤)
 - (٦) فى مستوى الاحداثيات حدد موضع النقاط التالية (-٣ ، ٣) ب (-١ ، -٢) جــ (-٣ ، -٤)
 د (-٥ ، ٠) ثم اوجد صورة الشكل (ب جــ د بالانتقال (س + ٥ ، ص + ٢)
- - (Λ) حدد فی مستوی الاحداثیات النقاط التالیة \P (Π) Π (Π) Π) جدد فی مستوی الاحداثیات النقاط التالیة Π (Π) Π (Π
 - ثانيا: مساحة المثلث (ب جـ

الدرس الثالث: الدائرة

$$(1)$$
 دائرة قطرها ۸ سم . احسب مساحة سطحها $(d = 2)$

$$(\frac{\Upsilon\Upsilon}{V})$$
 دائرة نصف قطرها Υ سم . احسب مساحة سطحها $(\frac{\Upsilon}{V})$

$$(\frac{\Upsilon\Upsilon}{V} = \frac{\Upsilon}{V})$$
 دائرة محیطها $\Upsilon\Upsilon$ سم . اوجد مساحتها (Υ)

$$(\frac{77}{V} = \frac{77}{V})$$
 دائرة مساحتها ۱۵۶ سم۲. احسب محیطها (ط

الدرس الرابع: المساحة الجانبية والكلية للمكعب ومتوازى المستطيلات

- (١) مكعب طول حرفه ٣ سم . اوجد مساحته الجانبية ومساحته الكلية
- (٢) مكعب طول حرفه ٧ سم احسب النسبة بين مساحته الجانبية ومساحته الكلية
- (٣) مكعب مجموع اطوال احرفه ١٣٢ سم . احسب مساحته الجانبيه ومساحته الكلية
 - (٤) مكعب محيط قاعدته ٣٢ سم . احسب مساحته الجانبية ومساحته الكلية
 - (٥) مكعب مساحته الجانبية ١٠٠ سم٢ . احسب مساحته الكلية
 - (٦) مكعب مساحته الكلية ٢١٦ سم٢ . اوجد مساحته الجانبية
- (٧) متوازى مستطيلات طوله ٧ سم ، وعرضه ٥ سم ، وارتفاعه ٩ سم . اوجد مساحته الجانبية والكليه
- (٨) علبة بدون غطاء طولها ١٥ سم وعرضها ٨ سم وارتفاعها ٢٠ سم . احسب مساحتها الجانبية والكلية
- (٩) حجرة على شكل متوازى مستطيلات ابعادها من الداخل ٤ متر ، ٣,٥ متر ، ٣ متر . يراد طلاء جدرالها الجانبية فقط بدهان تكلفة المتر المربع ٨ جنيهات . احسب التكاليف اللازمة لذلك .
- (۱۰) حجرة على شكل متوازى مستطيلات ابعادها من الداخل ۷ متر ، ٥ متر ، ارتفاعها ٣,٥ متر . يراد طلاء الجدران والسقف بدهان تكلفة المتر منه ١١ جنيها . احسب التكلفة اللازمة لذلك .
 - (۱۰) صندوق لسيارة نقل على شكل متوازى مستطيلات ابعاده من الداخل 6,2 متر ، ٣ متر ، ١,٥ متر يواد طلائه من الداخل بدهان تكلفة المتر المربع ١٠ جنيهات . احسب تكاليف ذلك
 - (11) حمام سباحه ابعاده من الداخل ٤٠ متر ، ١٢ متر ، ١,٥ متر . يراد تغطيته ببلاط سيراميك مربع الشكل طول ضلع البلاطه ٢٥ سم ، فإذا كان سعر المتر المربع ٢٨ جنيه . احسب التكاليف اللازمة لتغطية جدران وارضية الحمام

الوحدة الرابعث

الدرس الاول: القطاعات الدائرية

[١] الجدول التالي يوضح نسب انتاج اربعة مصانع

الوابع	الثالث	الثابي	الاول	المصنع
% ٣.	% 10	% Y ·	% 40	نسبة الانتاج

مثل تلك البيانات بالقطاعات الدائرية

[۲] الجدول التالي يوضح نسب انتاج البيض لثلاث مزارع خلال شهر

الثالثة	الثانية	الاولى	المزرعة
% £ .	% 40	% 40	نسبة الانتاج

مثل تلك البيانات بالقطاعات الدائرية

[٣] الجدول التالي يوضح النسب المئوية للمواد الدراسية المفضله لتلاميذ الصف السادس

الدراسات	العلوم	الرياضيات	اللغة العربية	المادة الدراسية
% 11	% ۲۲	% 70	% 40	نسبة عدد التلاميذ

مثل تلك البيانات بالقطاعات الدائرية

[٤] الجدول التالي يوضح عدد الساعات التي يقضيها محمود في مذاكرة دروسه خلال اسبوع

الدراسات	اللغة الانجليزية	العلوم	الرياضيات	اللغة العربية	المادة
٤	٧	٦	١.	٩	عدد الساعات

مثل تلك البيانات بالقطاعات الدائرية

[٥] اسرة تنفق ٢٠ % من دخلها الشهرى للمسكن ، ٢٥ % للملبس ، ٤٠ % للطعام وتدخر الباقى . مثل تلك البيانات بالقطاعات الدائرية - ثم اوجد المبلغ الذى تدخره هذه الاسرة اذا علم ان دخلها الشهرى ١٥٠٠ جنيه

الدرس الثاني والثالث: التجربه العشوائيه والاحتمال

[۱] اذا كانت التجربة العشوائية هي سحب كره واحدة من صندوق به ٣ كرات همراء و ٥ كرات زرقاء اكتب فضاء العينة لهذه التجربة

[۲] في تجربة القاء حجر نرد على ان يكون عدد النقاط بالوجه العلوى عددا زوجيا . اكتب فضاء العينة

[٣] اذا كانت التجربة العشوائية هي سحب كره من صندوق به ٥ كرات (بيضاء – همراء – زرقاء – خضراء) اكتب فضاء العينة لهذه التجربة

[٤] فى تجربة القاء حجر نرد مرة واحدة وملاحظة العدد الظاهر على الوجه العلوى . اكتب فضاء العينة ثم اوجد احتمال :

(۱) الحدث ۱ حيث ۱ هو ظهور عدد فردى (۲) الحدث ب حيث ب هو ظهور عدد اكبر من ٦

(٣) الحدث جـ حيث جـ هو ظهور عدد اقل من ٧ (٤) الحدث د حيث د هو ظهور عدد اقل من ٥

(٥) الحدث هـ حيث هـ ﴾ ٣ حيث و < ٣

[٣] صندوق به ٧ كرات حمراء و ٥ زرقاء تم سحب كره عشوائيا . اكتب فضاء العينة – ثم اوجد احتمال :

(۱) سحب كرة حمراء (۲) سحب كرة زرقاء

(٣) سحب كرة ليست همراء او زرقاء

[٤] اذا كانت التجربة الاحتمالية هي سحب بطاقه عشوائيا من ٧ بطاقات مكتوب عليها الارقام من ١ الى ٧ اكتب فضاء العينة – ثم او جد احتمال

(١) الحدث ١ حيث ١ هو ظهور عدد اقل من ٤

(۲) الحدث ب حيث ب هو ظهور عدد فردى

(٣) الحدث جـ حيث جـ هو ظهور عدد اكبر من ٥