
    if y = loga x  then  x = a y

x log b x = b

    loga a = 1

loga a x( ) = x

a log a x = x

loga M ⋅ N( ) = loga M + loga N

loga Mp( ) = P ⋅ loga M

    
loga

M
N

 

 
  

 

 
  = loga M − loga N

  
a

M

N

 

 
 
 

 

 
 
 

= an 
   

  
M

    
a−N =

1
aN

Sx = x − a + bi( )[ ]⋅ x − a − bi( )[ ] = x2 − 2ax + a2 + b2( )

    cos2 x + sin2 x = 1

sin 2( ) = 2sin( )⋅ cos( )

cos 2( ) = cos2 − sin2 cos 2( ) = 1 − 2sin2cos 2( ) = 2cos2 −1

  
sin

2

 

 
  

 

 
  = ±

1 − cos
2   

cos
2

 

 
  

 

 
  = ±

1 + cos
2

tan 2( ) =
2 t a n

1− tan 2

  
tan

2

 

 
  

 

 
  =

1 − cos
sin

=
sin

1 + cos

    
loga x =

ln x
ln a

  
sin + sin = 2 sin

+
2

cos
−
2

  
sin − sin = 2 cos

+
2

sin
−
2

  
cos + cos = 2 cos

+
2

cos
−
2

  
cos − cos = 2 sin

+
2

sin
−
2

sin +( ) = sin cos + cos sin sin −( ) = sin cos − cos sin

cos +( ) = cos cos − sin sincos −( ) = cos cos + sin sin

ax 2 + bx + c = 0

x =
−b ± b 2 − 4ac

2a

Page 1

Math Reference            Trigonometry & Analysis                James Lamberg

    

cos π
2

+ x
 

 
  

 

 
  = − sin x

cos π
2

− x
 

 
  

 

 
  = sin x

cos π ± x( ) = − cos x

cos
3π
2

+ x
 

 
  

 

 
  = sin x

cos
3π
2

− x
 

 
  

 

 
  = − sin x

    

sin
π
2

± x
 

 
  

 

 
  = cos x

sin π + x( ) = − sin x

sin π − x( ) = sin x

sin 3π
2

± x
 

 
  

 

 
  = − cos x

    

tan
π
2

+ x
 

 
  

 

 
  = − cot x

tan
π
2

− x
 

 
  

 

 
  = cot x

tan π + x( ) = tan x

tan π − x( ) = − tan x

tan 3π
2

+ x
 

 
  

 

 
  = − cot x

tan 3π
2

− x
 

 
  

 

 
  = cot x

∀ for every

∈  element of

∃ there exists

∋  such that

  

∴ therefore

Q since

¬ not

∧ and

∨ or

d derive

integrate∫
x=a  evaluate with x = a

∝  proportional to

  

p  precedes

f  follows

≅  congruent to

∪ union

∩ intersection

⊆  subset

⊇  superset

⊂  proper subset

⊃  propor superset

C (fancy) compliment

⇒  implies

⇔  double implication

~  negation or ¬( )
Q.E.D: Quod Erat Demonstandum

"that which was to be proved"

tan −( ) =
tan − tan

1 + tan tan

tan +( ) =
tan + tan

1 − tan tan

Mid =
x2 − x1

2
,

y2 − y1

2

 
 

 
 

Dist = x2 − x1( )2
+ y2 − y1( )2

    
A =

1
2
r2 , sector area



    

c2 = a2 + b2 − 2ab cos

b2 = a2 + c2 − 2ac cos
a2 = b2 + c2 − 2bc cos

    

sin
a

=
sin
b

=
sin
c

    
K =

1
2
bc sin

    
y = A ⋅ sin x -( ) + K,  > 0

    
Amplitude = A =

M − m
2

  
Period =

2π

  
Phase Shift =

  
Frequency =

1
period

=
2π

  
Critical Points =

period
4

  

Unit Circle

cos,  sin( )   
0,0° = 1, 0( )

  

π
6
, 3 0° =

3
2
,
1
2

 

 
 
 

 

 
 
 

  

π
4
, 4 5° =

2
2
,

2
2

 

 
 
 

 

 
 
 

  

π
3
, 6 0° =

1
2
,

3
2

 

 
 
 

 

 
 
 

  

π
2
, 9 0° = 0,1( )

  

2π
3
,120 ° = −

1
2
,

3
2

 

 
 
 

 

 
 
 

  

3π
4
,135° = −

2
2
,

2
2

 

 
 
 

 

 
 
 

  

5π
6
,150 ° = −

3
2
,
1
2

 

 
 
 

 

 
 
   

π,180° = −1,0( )
  

7π
6
,210° = −

3
2
,−

1
2

 

 
 
 

 

 
 
 

  

5π
4
,225° = −

2
2
,−

2
2

 

 
 
 

 

 
 
 

  

4π
3
,240° = −

1
2
, −

3
2

 

 
 
 

 

 
 
 

  

3π
4
,270° = 0, −1( )

  

5π
3
,300° =

1
2
,−

3
2

 

 
 
 

 

 
 
 

  

11π
6

,330° =
3
2
, −

1
2

 

 
 
 

 

 
 
 
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ab = a ⋅ b a 2 = a a

b
=

a

b
an = a

n

if a < b &  b < c,  then a < c

if a < b &  c < d,  then a + c < b + d

if a < b then a + k < b + k

if a < b &  k > 0,  then ak < bk

if a < b &  k < 0,  then ak > bk

a + b ≤ a + b

¯ a ≤ a ≤ a a ≤ k iff ¯k ≤ a ≤ k

a ≥ k iff a ≤ -k of a ≥ k

x→o
lim

sin x

x
= 1

x →o
lim

1− cos x

x
= 0

x →c
lim

f x( ) − f c( )
x − c

d

dx
xn = nxn−1 d

dx
C = 0

d

dx
tanx = sec2 x

d

dx
sin x = cos x

d

dx
cos x =¯sin x

d

dx
cot x =¯csc2 x

d

dx
sec x = sec x tan x

f t( ) =
1

2
gt2 + v0t + s0

v t( ) = f ' t( )
a t( ) = v' t( ) = f " t( )

d

dx
csc x = ¯csc x cot x

d

dx
f x( )⋅ g x( )( ) = f x( )g' x( ) + g x( ) f ' x( )

d

dx
u = u' ⋅

u

u
,u ≠ 0

Profit = Revenue - C o s t= S o l d⋅ Price - C o s t
Critical #  when f ' x( ) = 0 or f' x( )DNE

f x( )  increasing if f ' x( ) > 0

f x( )  decreasing if f ' x( ) < 0

MVT, f ' c( ) =
f b( ) − f a( )

b − a
on a,b[ ] IPs if f " x( ) = 0 and f " x( ) changes sign

∆y ≈ dy = f ' x( ) ⋅ dx

f x( ) concave down on a,b( ) 
if f ' x( )  is DEC ∀x in a,b[ ] ,  f " x( ) < 0

f x( ) concave up on a, b( ) 
if f ' x( )  is INC ∀x in a, b[ ] ,  f " x( ) > 0

d

dx
f x( )dx∫( ) = f x( )

k( )∫ dx = kx + C

xn( )∫ dx =
xn+1

n +1
+ C

TrapRule 

f x( )dx ≈
b − a

2na

b

∫ f a( ) + f b( ) + 2 f x1( ) + f x2( ) + ... + f xn( )( )( )

Euler' s Method

Start @ x,y → f' x , y( ) → ∆x → ∆y = ∆x ⋅ f' x,y( )
Use ∆y for change in next y

k ⋅ f ' x( )( )∫ dx = kf x( ) + C

f ' x( ) ± g' x( )( )∫ dx = f x( ) ± g x( ) 0( )∫ dx = C

sec2 x( )( )∫ dx = tan x( ) + C

csc2 x( )( )∫ dx = C − cot x( )
sec x( ) tan x( )( )∫ dx = sec x( ) + C

csc x( )cot x( )( )∫ dx = C − csc x( )
c

i=1

n

∑ = cn

i
i =1

n

∑ =
n n + 1( )

2

i2

i =1

n

∑ =
n n +1( ) 2n + 1( )

6
i3

i =1

n

∑ =
n 2 n + 1( )2

4

cos x( )( )∫ dx = sin x( ) + C

sin x( )( )∫ dx = C − cos x( )

x→ ∞
lim f ci( )

i =1

n

∑ ⋅ ∆x, xi− a ≤ ci ≤ xi,∆x =
b − a

n
f x( )dx

a

a

∫ = 0

f x( )
b

a

∫ dx = − f x( )
a

b

∫ dx f x( )
a

b

∫ dx = f x( )
a

c

∫ dx + f x( )
c

b

∫ dx

k ⋅ f x( )
a

b

∫ dx = k f x( )
a

b

∫ dx

f x( ) ± g x( )
a

b

∫ dx = f x( )
a

b

∫ dx ± g x( )
a

b

∫ dx

f x( )
a

b

∫ dx = F b( ) − F a( ), F' x( ) = f x( ) F' x( ) =
d

dx
f t( )

a

x

∫
 

 
  

 
 = f x( )

If f is even, f x( )
-a

a

∫ dx = 2 f x( )
0

a

∫ dx
Average Value of a

Function :
1

b - a
f x( )dx

a

b

∫
If f is odd, f x( )

-a

a

∫ dx = 0

d

dx

f x( )
g x( ) =

g x( ) f ' x( ) − f x( )g' x( )
g x( )( )2
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ln x( ) =
1

t
dt, x > 0

1

x

∫
ln 1( ) = 0 ln a ⋅ b( ) = ln a( ) + ln b( )

ln
a

b
 
 

 
 = ln a( ) − ln b( )

ln a( ) n = n ⋅ ln a( )

ln e( ) =
1

t
dt = 1

1

e

∫
ln ex( ) = x

d

dx
ln u( ) =

d

dx
ln u =

du

u

1

u
du = ln u( ) + C∫

tan x( )dx = C − ln cos x( )∫ = l n secx( ) + C

cot x( )dx = l n s inx( ) + C∫ = C − l ncscx( ) sec x( )dx = ln sec x( ) + tan x( ) + C∫
csc x( )dx = C − ln csc x( ) + cot x( )∫f −1 x( ) = g x( ),g' x( ) =

1

g' g x( )( )
f −1 x( ) = g x( ), a,b( ) f , g' b( ) =

1

f ' a( )

ea ⋅ eb = ea+ b

ea

eb
= ea− b

d

dx
eu( )du = eu ⋅du

loga x( ) =
ln x( )
ln a( )

d

dx
a u( ) = ln a( ) ⋅ au ⋅du

d

dx
loga u( )( ) =

du

ln a( )⋅ u

ax( )dx =
ax

ln a( )∫ + C
d

dx
u n( ) = n ⋅u n −1( ) ⋅ du

d

dx
ee( ) = 0

d

dx
x x( ) = ln x( ) +1( )⋅ x x

e = lim
x→∞

1 +
1

x
 
 

 
 

x

Compounded n times a year

A = P 1+ r

n

 
 

 
 

n⋅t

Compounded Continously

A = P ⋅ er⋅t Newton' s Law of Cooling

dT

dt
= k To − Ts( )

y = arcsin x( ), iff sin y( ) = x

y = arccos x( ), iff cos y( ) = x

y = arctan x( ), iff tan y( ) = x

y = arccot x( ), iff cot y( ) = x

y = arcsec x( ), iff sec y( ) = x

y = arccsc x( ), iff csc y( ) = x

y = arcsin x( ),D : -1,1[ ], R : − π
2

,
π
2

 
 

 
 

y = arccos x( ), D: -1,1[ ],R : 0,π[ ]

y = arctan x( ), D: -∞,∞( ),R : −
π
2

,
π
2

 
 

 
 

y = arccot x( ), D :-∞, ∞( ), R : 0, π( )
y = arcsec x( ), D :x ≥1( ), R : 0,π( )

y = arccsc x( ), D :x ≥ 1( ),R : − π
2

,
π
2

 
 

 
 

eπi +1 = 0

d

dx
arcsin u( )( ) =

1

1− u 2
⋅ du

d

dx
arccos u( )( ) =

−1

1 − u2
⋅ du

d

dx
arctan u( )( ) =

1

1 + u2
⋅du

d

dx
arc cot u( )( ) =

−1

1 + u2
⋅ du

d

dx
arc sec u( )( ) =

1

u u2 −1
⋅ du

d

dx
arc csc u( )( ) =

−1

u u2 −1
⋅ du

du

a2 − u 2∫ = arcsin
u

a
 
 

 
 + C

du

a2 + u 2∫ =
1

a
arctan

u

a
 
 

 
 + C

du

u u2 − a 2∫ =
1

a
arcsec

u

a
+ C

cosh2 x − sinh2 x = 1

tanh 2 x + sec h 2x = 1

coth 2 x − csch 2x = 1

sinh 2x( ) = 2 sinh x( )⋅ cosh x( )

cosh 2x( ) = cosh 2 x ⋅sinh2 x

sinh2 x =
cosh 2x( ) −1

2

cosh2 x =
cosh 2x( ) + 1

2sinh x + y( ) = sinh x( )⋅ cosh y( ) + cosh x( )⋅ sinh y( )
sinh x − y( ) = sinh x( )⋅ cosh y( ) − cosh x( )⋅ sinh y( )
cosh x + y( ) = cosh x( ) ⋅cosh y( ) + sinh x( ) ⋅sinh y( )
cosh x − y( ) = cosh x( ) ⋅cosh y( ) − sinh x( ) ⋅sinh y( )

sinh x( ) = ex − e− x

2

cosh x( ) =
e x + e−x

2

cosh u( )∫ ⋅ du = sinh u( ) + C

sinh u( )⋅∫ du = cosh u( ) + C

sec h2u∫ ⋅ du = tanh u( ) + C

csc h2u∫ ⋅ du = C − coth u( )

sec h u( ) ⋅ tanh u( )∫ ⋅ du = C − sec h u( )

csc h u( ) ⋅ coth u( )∫ ⋅ du = C − csc h u( )

d

dx
sinh u( ) = cosh u( ) ⋅ du

d

dx
cosh u( ) = sinh u( ) ⋅ du

d

dx
tanh u( ) = sech 2u ⋅du

d

dx
coth u( ) = −csc h2u ⋅ du

d

dx
sec h u( ) = − sec h u( ) ⋅ tanh u( )( ) ⋅ du

d

dx
csc h u( ) = − csch u( )⋅ coth u( )( )⋅ du
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arcsinh x( ) = ln x + x 2 +1( ),D : −∞,∞( )

arccosh x( ) = ln x + x 2 −1( ),D : 1,∞( )

arctan h x( ) = 1

2
ln

1+ x

1− X

 
 
 

 
 
 ,D : −1,1( )

arccoth x( ) = 1

2
ln

x +1

x −1

 
  

 
  ,D : −∞,−1( )∪ 1,∞( )

arcsec h x( ) = ln
1+ 1− x 2

x

 

 
 
 

 

 
 
 ,D : 0,1( ]

arccsc h x( ) = ln
1

x
+ 1+ x2

x

 

 
 
 

 

 
 
 ,D : −∞,0( ) ∪ 0,∞( )

d

dx
arcsinh u( ) =

du

u2 +1

d

dx
arccosh u( ) =

du

u2 −1

d

dx
arctan h u( ) =

d

dx
arccoth u( ) =

du

1− u2

d

dx
arcsech u( ) =

−du

u 1 − u2

d

dx
arccsc h u( ) =

−du

u 1 + u2

du

u2 ± a2∫ = ln u + u2 ± a2( ) + C

du

a2 − u 2∫ =
1

2a
ln

a + u

a − u
 
 

 
 + C

du

u a2 ± u2∫ = C −
1

a
ln

a + a2 ± u2

u

 

 
 

 

 
 

Area Between Two Curves

f x( ) − g x( )
a

b

∫ dx

Disk : Line ⊥ to axis

of revoluition,π f x( )2 dx
a

b

∫

Washer : π f x( )2

a

b

∫ − g x( )2
dx, f x( ) ≥ g x( )

Shell : Line | | to axis

of revolution,2π r x( )h x( )dx,
a

b

∫  

r = radius, h= height

Arc Length : s = 1 + f ' x( )2
dx

a

b

∫

Area of Revolved Surface :

S = 2π r x( ) 1+ f ' x( )( )2
dx

a

b

∫

Work = Force ⋅ Distance over which the force is applied

W = F x( )dx
a

b

∫

Hooke' s Law : F = k ⋅ d

Force needed to strech a 

spring d distance from

its natural length

Law of Universal Gravitation :

F = k ⋅
m1 ⋅ m2

d 2

 
 

 
 ,m1 and m 2 are masses

Coulomb' s Law for Charges :

F = k ⋅
q1 ⋅q2

d2

 
 

 
 

Force of Gravity : F =
c

x2

 
 

 
 ,

x = distance from center of Earth

Gas Pressure:F =
k

v
 
 

 
 ,

v = volume of gas

Weight = Volume ⋅ Density
Cross Section Area ⋅ Distance( )dy = Work

a

b

∫Fluid Force F = Pressure ⋅ Area

F = ⋅ Depth ⋅ Area

Fluid Pressure P = Weight Density ⋅ h,

h = depth below surface

Force Exerted by a Fluid :

F = w h y( ) ⋅ l y( )( )dy
a

b

∫Force = Mass ⋅ Acceleration

Moment = m ⋅ x
Moments &  Center of Mass of 

a Planar Lamina :

Mx =
f x( ) + g x( )

2

 
 

 
 

a

b

∫ f x( ) − g x( )( )dx

My = x ⋅ f x( ) − g x( )( )
a

b

∫ dx

Center of Mass x ,y ( ) :

m = f x( ) − g x( )( )dx
a

b

∫

x =
M y

m
, y =

Mx

m

Theorem of Pappus :

V = 2π ⋅ r ⋅ A,

A = Area of Region R

u ⋅ dv = uv − v ⋅ du∫∫

sin 2k +1 x( )cos∫
n

x( )dx = 1 − cos2 x( )( )k
cos∫

n

x( )sin x( )dx

sinm x( )cos∫
2 x +1

x( )dx = sinm x( ) 1− sin 2 x( )( )∫
k

cos x( )dx
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cosn x( )dx =
2

3
 
 

 
 

4

5
 
 

 
 

6

7
 
 

 
 ...

n −1

n
 
 

 
 ,n is odd,n ≥ 3

0

π
2

∫ cosn x( )dx =
1

2
 
 

 
 

3

4
 
 

 
 

5

6

 
 

 
 ...

n −1

n
 
 

 
 

π
2

 
 

 
 , n is even,n ≥ 2

0

π
2

∫

sec2k x( ) tann x( )dx∫ = sec2 x( )( )k−1
tann x( )sec2 x( )dx∫ secm x( ) tan2 k +1 x( )dx∫ = secm −1 tan 2k x( )sec x( ) tan x( )dx∫

tann x( )dx∫ = tan n−2 x( ) tan2 x( )dx∫
For Integrals Invloving a2 - u2 ,

u = asin( ), a 2 - u2 = acos( )

For Integrals Invloving a2 + u2 ,

u = atan( ), a2 + u2 = asec( )

For Integrals Invloving u2 - a2 ,

u = asec( ), u2 - a2 = atan( )

Indeterminate form, L' Hôpital' s Rule

x →c
lim

f x( )
g x( ) =

x →c
lim

f ' x( )
g' x( )

a2 − u 2∫ du =
1

2
a2 arcsin

u

a
 
 

 
 + u a2 − u2 

 
 
 + C,a > 0

u 2 − a 2∫ du =
1

2
u u2 − a2 − a2 ln u + u2 − a2( ) + C,u > a > 0

u 2 + a 2∫ du =
1

2
u u2 + a2 + a2 ln u + u2 + a2( ) + C,a > 0

f x( )dx = lim
b→ ∞

a

∞

∫ f x( )dx
a

b

∫

f x( )dx = lim
a→ − ∞

−∞

b

∫ f x( )dx
a

b

∫

f x( )dx = lim
a→ − ∞

−∞

∞

∫ f x( )dx
a

c

∫ + lim
b→∞

f x( )dx
c

b

∫
Discontinuity at b on a, b[ )

f x( )dx = lim
c →b −

a

b

∫ f x( )dx
a

c

∫

Discontinuity at a on a , b( ]

f x( )dx = lim
c →a +

a

b

∫ f x( )dx
c

b

∫
Discontinuity at c in a, b( )

f x( )dx =
a

b

∫
c →b−
lim f x( )dx

a

c

∫ +
c →a +
lim f x( )dx

c

b

∫

1

x p dx =
1

p − 1
,if p > 1

Diverges,if p ≤ 1

 
 
 

  
 

1

∞

∫

nth - term test an
n =1

∞

∑ ,Diverges if 
n→ ∞
liman ≠ 0

Geometric arn

n=0

∞

∑ ,Converges if r < 1,Diverges if r ≥ 1

Sum is Sn =
a

1 − r
, if it converges

Telescoping, bn − bn +1( )
n=1

∞

∑ ,Converges if 
n →∞
limbn = L

Sum is Sn = b1 − L

n→∞
lim an ± bn( ) = L ± K

n→∞
lim an ⋅ bn( ) = L ⋅ K

n→∞
lim C ⋅ an( ) = C ⋅ L

n→∞
lim

an

bn

 
 
  

 
 =

L

K
, bn ≠ 0,k ≠ 0

p -series,
1

n p
n=1

∞

∑ ,Converges if p > 1, Diverges if p ≤1

Alternating, −1( )n −1an
n=1

∞

∑ ,Converges if 0 < an + 1 ≤ an , lim
n→∞

an = 0

Remainder Rn ≤ an+1

if 
n→ ∞
lim an = 0, then 

n→∞
lim an = 0

Absolute Convergence, an∑  Converges

Conditional Convergence, an∑  Converges, 

but an∑  Diverges

Definition of Taylor Series

f n c( )
n!n=0

∞

∑ x − c( )n

Power Series,  f x( ) = an x − c( )n

n =0

∞

∑
Radius is ∆x about c :  c ± ∆x

Root, an
n=1

∞

∑ ,Converges if 
n→∞
lim an

n < 1, Diverges if 
n →∞
lim an

n > 1

Fails if 
n→∞
lim = 1
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Integral (Constant,  Positive,  Decreasing),

an
n=1

∞

∑ ,an = f n( ) ≥ 0,Converges if f n( )dn Converges
1

∞

∫

Diverges if f n( )dn Diverges, 
1

∞

∫ Remainder 0< Rn < f n( )dn
n

∞

∫

Ratio, an
n=1

∞

∑ ,Converges if 
n →∞
lim

an+1

an

< 1, Diverges if 
n→∞
lim

an+1

an

> 1

Fails if 
n→∞
lim = 1

Direct bn > 0( ), an
n=1

∞

∑ ,

Converges if 0≤ an ≤ bn , bn Converges∑ ,

Diverges if , 0 ≤ bn ≤ an, bn  Diverges∑

Limit bn > 0( ), an
n=1

∞

∑ ,

Converges if 
n→ ∞
lim

an

b n

= L > 0, b n  Converges∑ ,

Diverges if ,
n→∞
lim

an

bn

= L > 0, bn Diverges∑

If f has n derivatives at x = c,  then the polynomial

Pn x( ) = f c( ) +
f ' c( ) x − c( )

1!
+

f ' c( ) x − c( )2

2!
+

f n c( ) x − c( )n

n!
+ ...

This is the n - th Taylor polynomial for f at c

If c = 0, then the polynomial is called Maclaurin

f x( ) = Pn x( ) + Rn, Rn x( ) = f x( ) − Pn x( )( )

Pn x( ) = f c( ) +
f ' c( ) x − c( )

1!
+

f ' c( ) x − c( )2

2!
+

f n c( ) x − c( )n

n!
+ Rn x( )

Rn x( ) =
f n+1 z( ) x − c( )n+1

x −1( )!
,  z is between x and c

Power Series,  f x( ) = an x − c( )n

n =0

∞

∑

f ' x( ) = n ⋅ an x − c( )n−1

n=1

∞

∑

f x( )dx =∫ C +
an x − c( )n+1

n +1n= 0

∞

∑

1

x
= 1 − x −1( ) + ... + −1( )n

x −1( )n + ...Converges 0,2( )

1

1 + x
= 1 − x + ... + −1( )n

xn + ...Converges -1,1( )

ln x = x −1( ) + ... +
−1( )n+1 x −1( )n

n
+ ...Converges 0,2( )

ex = 1 + x + ... +
xn

n!
+ ...Converges -∞, ∞( )

sin x = x −
x3

3!
+ ... +

−1( )n x2n+1

2n +1( )! + ...Converges -∞,∞( )

cos x = 1 −
x2

2!
+ ... +

−1( )n x2n

2n( )! + ...Converges -∞,∞( ) arctan x = x −
x3

3!
+ ... +

−1( )n x2n +1

2n + 1
+ ...Converges -1,1[ ]

arcsin x = x +
x3

2 ⋅ 3
+ ... +

2n( )!x2n+1

2n n!( )2
2n +1( )

+ ...Converges -1,1[ ]

Polar

x = r ⋅ cos , y = r ⋅sin

tan = y

x
, x2 + y2 = r2

dx

d
= cos ⋅ f ' ( ) − f ( )sin

dy

d
= cos ⋅ f ( ) + f ' ( )sin

dy

dx
= cos ⋅ f ( ) + f ' ( )sin

cos ⋅ f ' ( ) − f ( )sin

Position Function for a Projectile

r t( ) = v0 cos( )ti + h + v0 sin( )t −
1

2
gt2 

 
 
 j

g = gravitational constant

h = initial height

v0 = initial velocity

= angle of elevation
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Smooth Curve C,  x = f t( ),  y = g t( )

dy

dx
=

dy

dt
 
 

 
 

dx

dt
 
 

 
 

 &  
d 2 y

dx2
=

d

dt

dy

dx
 
 

 
 

dx

dt

,
dx

dt
≠ 0

Arc = f ' t( )( )2 + g' t( )( )2

a

b

∫ dt

SurfaceX = 2π g t( ) f ' t( )( )2
+ g' t( )( )2

a

b

∫ dt

SurfaceY = 2π f t( ) f ' t( )( )2 + g' t( )( )2

a

b

∫ dt

Horizontal Tangent Lines

dy

dx
= 0,

dy

d
= 0,

dx

d
≠ 0

Vertical Tangent Lines

dy

dx
= DNE,

dx

d
= 0,

dy

d
≠ 0Limaçon :  r = a ± b ⋅ cos

if a > b,limaçon;if a< b,limaçon w/ loop;

if a = b, cardioid

Rose Curve :  r = a ⋅ cos n ⋅( ),r = a ⋅sin n ⋅( )
if n is odd,  n petals; even, 2n petals

Circles and Lemniscates

r = a ⋅ cos( ),r = a ⋅sin( )
r 2 = a2 ⋅ sin 2( ),r 2 = a2 ⋅ cos 2( )
POLAR

Area =
1

2
f ( )( )∫

2

d

Arc = f ( )( )2
+ f ' ( )( )2

∫ d

SurfaceX = 2π f ( )sin f ( )( )2 + f ' ( )( )2∫ d

SurfaceY = 2π f ( )cos f ( )( )2 + f ' ( )( )2

∫ d

  
v 
v = q1 − p1( )2

+ q2 − p2( )2
= Norm

  

Unit Vector in the Direction of v

v 
u =

v 
v 
v 
v 

  
v 
u • v 

v = u1 ⋅ v1 + u2 ⋅ v2

  

Angle between two Vector

cos =
v 
u ⋅ v v 
v 
u ⋅ v 

v 

r t( ) = f t( )i + g t( ) j

r1 t( ) ± r2 t( ) = f1 t( )i + g1 t( ) j( ) ± f2 t( )i + g2 t( ) j( )

t → a
lim r t( )( ) =

t →a
lim f t( )( )i +

t→ a
lim g t( )( ) j

Continuous at point t = a if

t → a
lim r t( )( ) exists and 

t →a
lim r t( )( ) = r a( )

r' t( ) = f ' t( )i + g' t( ) j

r t( )∫ dt = f t( )dt∫( )i + g t( )dt∫( ) j

Velocity = r' t( ), Acceleration = r" t( )
Speed = r' t( )
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€ 

Square Matrix

#  Rows =  #  Cols

€ 

Diagonal Matrix

Square with all entries not on 

the main diagonal being zero

€ 

Lower Triangular

Upper right triangle from

main diagonal is all zeros

€ 

Upper Triangular

Lower left triangle from

main diagonal is all zeros

€ 

Identity Matrix :  I

Diagonal matrix with

ones on main diagonal

€ 

Transpose A :  A t  or A'

Switch rows and columns

positions with eachother

€ 

Matrix Elements

Rows X Columns

€ 

Row Vector

A 1 ×  n Matrix

€ 

Column Vector

A m ×  1 Matrix

€ 

Scalar

A real number

€ 

Dot Product

Sum of elements in two or more matrices

multiplied by each corresponding element

€ 

Length (Norm)

v = v •v = v1
2 + v2

2 + ...+ vn
2

€ 

Angle Between  Two Vectors

cos θ( ) =
x • y

x ⋅ y

€ 

Matrix Multiplication

Multiply rows of A and columns of

B to get an entry of the product C

i th row of A ⋅  jth  column of B =  Cij

C ij = Aik
k=1

N

∑ ⋅ Bkj

€ 

I ⋅ A = A = A ⋅ I

€ 

How to solve a system

1) Add a multiple of one equation

    to another equation

2) Multiply an equation by a non -

    zero scalar (constant)

3) Switch the orger of the equations

€ 

Gaussian Elimination

A | b
~

( ) → Ω | c
~

( )
Using Elementary Row Ops

Into Row Echelon Form

€ 

Pivot

A one on the main diagonal

used as a reference point for

solving a system of equations

and for determining the number

of equations in the system

€ 

Back Substitution

Solving from row echelon form

to row reduced echelon form

€ 

Free Variables

#  Columns without pivots

€ 

Basic Variables

#  Columns with pivots

€ 

Superposition Principle of

Homogenous Systems

If x
~
 and y

~
 are solutions,

so is x
~
 + y

~

€ 

Matrices define linear functions

f
~

x
~
+y

~

 
  

 
  = f

~
x
~

( ) + f
~

y
~

 
  

 
  

f
~

c ⋅ x
~

( ) = c ⋅ f
~

x
~

( )

€ 

Every Linear Function

f
~
: ℜN → ℜM

x
~

→ f
~

x
~( )

€ 

Every Linear Equations is

given by a Matrix Multiplication

f
~

x
~( ) = A x

~( )

€ 

Composition = Matrix Multiplication

€ 

f -1 y
~

 
  

 
  = A−1 ⋅ y

~

€ 

A−1 ⋅ A = I

€ 

Gauss - Jordan Method for A-1

A | I( ) → Row Ops → I | A-1( )

€ 

A is invertible ( A-1 exists) iff

A has N pivots ( rank A = N)

€ 

Rank =#  of Pivots

€ 

Determinant of A

A =
a b

c d

 

 
  

 

 
  

det  A = a ⋅ d −b ⋅ c

€ 

A =
a b

c d

 

 
  

 

 
  

A−1 =
1

a ⋅ d −b ⋅ c
⋅

d −b

−c a

 

 
  

 

 
  

€ 

∃A−1 ⇔ det A ≠ 0

€ 

det

a b c

d e f

g h j

 

 

 
 
 

 

 

 
 
 

= aej + bfg + cdh − ceg− afh − bdj

€ 

Solve Initial Value Problem

1) Solve the differential equation

2) Plug in initial conditions

€ 

Autonomous Ordinary

Differential Equations

dx
dt

= g x( )

€ 

Equilibrium Solutions

x t( ) = constant

dx

dt
= 0

€ 

Autonomous Differential Equations

dx

dt
= f x( )

€ 

Equilibrium Point

If lim
t →∞

x t( ) = x*  then x *

is an equilibrium point

€ 

Equilibrium

Stable → f ' x *( ) < 0

Unstable → f ' x *( ) > 0

Need More Info → f ' x *( ) = 0
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€ 

dx

dt
= F t, x, y( )

dy

dt
= G t, x, y( )

x t( ), y t( )( )  parametrize the curve

€ 

Uncoupled Linear Systems

dx

dt
= a ⋅ x,  x t0( ) = x0

dy
dt

= b ⋅ y,  y t0( ) = y0

€ 

Sink :  a < 0, b < 0

Source :  a > 0, b > 0

Saddle :  a < 0, b > 0

€ 

d x
~

dt
= A ⋅ x

~
,  x

~
t0( ) = x

~ 0

x
~

t( ) = eλ⋅ t ⋅ v
~

€ 

Crucial Equation

A ⋅ v
~

= λ ⋅ v
~

€ 

λ is a scalar called an eigenvalue of

the matrix A and v
~

 is the corresponding

eigenvector and is not equal to 0

€ 

Characteristic Equation

λ is an eigenvalue of A

iff det A − λ ⋅ I( ) = 0

€ 

x ' t( )
y ' t( )

 

 
  

 

 
  =

a b

c d

 

 
  

 

 
  ⋅

x

y

 

 
  

 

 
  

λ is an eigenvalue of A

v1

v2

 

 
  

 

 
   is an eigenvector

x

y

 

 
  

 

 
  = eλ⋅ t ⋅

v1

v2

 

 
  

 

 
  

€ 

Eigenspace

All multiples of an eigenvector

€ 

a b

c d

 

 
  

 

 
  ⋅

v1

v2

 

 
  

 

 
  = λ ⋅

v1

v2

 

 
  

 

 
  

€ 

Characteristic Polynomial

det
a − λ b

c d − λ

 

 
  

 

 
  = 0

a − λ( ) d − λ( ) − b ⋅ c = 0

€ 

Subspace w (Linearity)

1) If x
~

 and y
~

 are two vectors in w,

    then x
~
+y

~
 is a vector in w

2) If x
~

 is a vector in w,  then c ⋅ x
~

 is

    a vector in w for any scalar c

€ 

If 0
~

∉ V  then V

is not a subspace

€ 

Vectors span a plane (all linear combinations)

€ 

Let A be an m × n matrix,  the null

space (kernel) of A is the set of solutions to

the homogenous system of linear equations

€ 

A set of vectors

v1...vk  is linearly

dependent if there

are scalars c1...ck = 0
~

€ 

A set of vectors v1...vk is a basis for a

subspace vC ℜn if they span v and are

linearly independent

€ 

Dimension of v

The number of vectors

in any basis of v

€ 

Homogenous Linear Systems of

First Order Differential Equations

d x
~

dt
= A ⋅ x

~
,  x

~
t( ) =

x t( )
y t( )

 

 
  

 

 
  

€ 

Solving Systems

1) Compute eigenvalues &  eigenvectors

2) Solve Equation (Real of Imaginary)

3) Find General Solutions

4) Solve the Initial Conditions

€ 

If A is real and λ = a +i ⋅ b is an eigenvalue,

then so is its complex conjugate λ = a - i ⋅ b

€ 

Euler' s Formula

e i⋅ x = cos x( ) + i ⋅ sin x( )

€ 

e i⋅ π +1= 0

€ 

1

i
= −i

€ 

a − i ⋅ b

a2 + b2 =
1

a + i ⋅ b

€ 

e a +i⋅ b( )⋅ t = ea⋅t ⋅ cos b ⋅ t( ) + e i⋅b⋅ t ⋅ sin b ⋅ t( )

€ 

Independent if det A ≠ 0

€ 

Classification of planar hyperbolic

equilibria for given eigenvalues

Real and of opposite sign :  Saddle

Complex with negative real part :  Spiral Sink

Complex with positive real part :  Spiral Source

Real,  unequal,  and negative :  Nodal Sink

Real,  unequal,  and positive :  Nodal Source

Real,  equal,  negative,  only one :  Improper Nodal Sink

Real,  equal,  positive,  only one :  Improper Nodal Source

Real,  equal,  negative,  two :  Focus Sink

Real,  equal,  positive,  two :  Focus Source

€ 

A =
a b

c d

 

 
  

 

 
  

λ =
tr A( ) ± tr A( )2 − 4 ⋅ det A( )

2

€ 

tr
a b

c d

 

 
  

 

 
  = a + d

€ 

Trace is the sum

of the diagonal

elements of a matrix

€ 

Spring Equation

Fext t( ) = m ⋅
d2x

dt2 + µ ⋅
dx

dt
+ k ⋅ x

m = mass, µ = friction,  k = spring constant

€ 

Spring Equation

Fext t( ) = 0, homogenous

Fext t( ) ≠ 0, inhomogenous
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€ 

Second Order Scalar ODEs

a ⋅
d2x

dt2
+ b ⋅

dx

dt
+ c ⋅ x = d

€ 

Spring (or RCL Circuit)

µ 2 > 4 ⋅ m ⋅ k,  Overdamped

µ 2 = 4 ⋅ m ⋅ k,  Critically Damped

µ 2 < 4 ⋅ m ⋅ k,  Underdamped

€ 

General Solution to Inhomogenous

x(t) = xparticular t( ) + c1 ⋅ x ind #1 t( ) + c2 ⋅ x ind# 2 t( )

€ 

Spring (or RCL Circuit)

µ 2 > 4 ⋅ m ⋅ k,  x1 = eλ1 ⋅t ,  x2 = eλ2 ⋅t

µ 2 = 4 ⋅ m ⋅ k,  x1 = eλ1 ⋅t ,  x2 = t ⋅ eλ2⋅ t

µ 2 < 4 ⋅ m ⋅ k,  x1 = eα⋅ t cos β ⋅ t( ),  x2 = eα⋅t sin β ⋅ t( )

€ 

If you are unable to

solve the particular

solution,  try

increasing the 

power of t

€ 

For Spring,  B = k m

If ω ≈ B,  Beats Occurs

If ω = B,  Resonance Occurs

€ 

Solving 2nd Order ODEs

1) Solve Homogenous

2) Find Particular Solution

3) Find General Solution

4) Solve Initial Conditions

5) Combine for Solution

€ 

Quasi - Periodic

Close to periodic

€ 

Laplace Transforms

F s( ) = e− s⋅ t ⋅ f t( )dt
0

∞

∫
  

€ 

Laplace Derivatives

l f ' t( )( ) = s ⋅ F s( ) − f 0( )
l f " t( )( ) = s2 ⋅ F s( ) − s ⋅ f 0( ) − f ' 0( )

€ 

Laplace Transforms

f t( ) =1, F s( ) =
1

s

f t( ) = tn ,  F s( ) = n!

sn +1

f t( ) = ea⋅t ,  F s( ) = 1
s− a

f t( ) = cos τ ⋅ t( ),  F s( ) =
s

s2 + τ 2

f t( ) = sin τ ⋅ t( ),  F s( ) = τ
s2 + τ 2

f t( ) = HC t( ),  F s( ) =
e− c⋅ s

s

f t( ) =δC t( ),  F s( ) = e− c⋅ s

€ 

Step Function

HC t( ) =
0

1

 
 
 
   

for 0 ≤ t < c

for t ≥ c

€ 

Dirac Delta Function

δC t( ) =

∞
0

1 2δ
0

 

 
 
 

 
 
 

 

for t = c

for t < c −δ
for c −δ < t < c +δ

for t > c + δ

€ 

Jacobian Matrix

F
~

x
~

( ) = F
~

x
~ 0

( ) + dF x
~ 0

⋅ x
~
− x

~ 0
( )

dF x
~ 0

=

∂f
∂x

x0, y0( ) ∂f
∂y

x0, y0( )
∂g

∂x
x0, y0( ) ∂g

∂y
x0, y0( )

 

 

 
 
 
 

 

 

 
 
 
 

€ 

The fixed point z
~

= 0
~

 is called hyperbolic

if no eigenvalue of the jacobian has 0 as

a real part (no 0 or purely imaginary)

€ 

If you are near a hyperbolic fixed

point,  the phase portrait of the

nonlinear system is essentially the

same as its linearization



lim
x,y( )→ a,b( )

f x, y( ) = f a,b( ) dz

dx
= lim

∆x →0

∆z

∆x

dz

dy
= lim

∆y →0

∆z

∆y

fx x, y( ) = lim
h→0

f x + h,y( ) − f x, y( )
h

fy x, y( ) = lim
k →0

f x,y + k( ) − f x,y( )
k

∂z

∂x
=

∂f

∂x
= fx x, y( ) =

∂
∂x

f x,y( ) = Dx f x, y( )[ ] = D1 f x, y( )[ ]
∂z

∂y
=

∂f

∂y
= fy x, y( ) =

∂
∂y

f x,y( ) = Dy f x, y( )[ ] = D2 f x,y( )[ ]

z = f x,b( )    y = b   (x-curve)

z = f a, y( )   x = a   (y-curve)

Plane Tangent to the surface z = f x,y( )  at the

point P = a,b, f a,b( )( )  has the equation:

z − f a,b( ) = fx a,b( ) x − a( ) + fy a,b( ) y − b( )

fx( )
x

= fxx = ∂fx

∂x
= ∂

∂x

∂f

∂x

 
 

 
 

= ∂2 f

∂x2

 
 
  

 
 

fy( )
y

= fyy =
∂fy

∂y
= ∂

∂y

∂f

∂y

 
 
  

 
= ∂2 f

∂y2

 
 
  

 
 

fx( )
y

= fxy =
∂fx

∂y
=

∂
∂y

∂f

∂x

 
 

 
 =

∂2 f

∂x∂y

 
 
  

 
 

fy( )
x

= fyx =
∂fy

∂x
=

∂
∂x

∂f

∂y

 
 
  

 
=

∂2 f

∂y∂x

 
 
  

 
 

fxy a,b( ) = fyx a,b( )

Normal Vector to Tangent Plane

n = fx x0,y0( )i + fy x0,y0( )j −k = ∂z

∂x
,
∂z

∂y
,−1

Conditions for Extrema for f x , y( )
fx a,b( ) = 0 = fy a,b( )

df = fx x, y( )∆x + fy x, y( )∆y

f x + ∆x, y + ∆y( ) = f x, y( ) + ∆f  (exact)

f x + ∆x, y + ∆y( ) ≈ f x,y( ) + df  (appoximation)

f a + ∆x,b + ∆y( ) ≈ f a,b( ) + fx a,b( )∆x + fy a,b( )∆y

dz =
∂z

∂x
∆x +

∂z

∂y
∆y =

∂z

∂x
dx +

∂z

∂y
dy dw =

∂w

∂x
dx +

∂w

∂y
dy +

∂w

∂z
dz

x = f x, y,z( ) = f g u,v( ),h u,v( ),k u,v( )( )
∂w

∂u
=

∂w

∂x

∂x

∂u
+

∂w

∂y

∂y

∂u
+

∂w

∂z

∂z

∂u

∂w

∂v
=

∂w

∂x

∂x

∂v
+

∂w

∂y

∂y

∂v
+

∂w

∂z

∂z

∂v

w is a funtion of x1, x2, . . . , xm and each is

a funtion of the variables t 1,t 2, . . . , tn

∂w

∂ti

= ∂w

∂x1

∂x1

∂ti

+ ∂w

∂x2

∂x2

∂ti

+ ...+ ∂w

∂xm

∂xm

∂t i

for each i, 1 ≤ i ≤ n

∂x
∂r

= cos ,
∂y
∂r

= sin ,
∂x
∂

= −rsin ,
∂y
∂

= rcos

∂w

∂r
=

∂w

∂x

∂x

∂r
+

∂w

∂y

∂y

∂r
=

∂w

∂x
cos +

∂w

∂y
sin

∂w

∂
=

∂w

∂x

∂x

∂
+

∂w

∂y

∂y

∂
= −r

∂w

∂x
sin + r

∂w

∂y
cos

∂2w

∂r 2
=

∂2w

∂x2
cos2 + 2

∂2w

∂x∂y
cos sin +

∂2w

∂y 2
sin2

∂z

∂x
= −

Fx

Fz

,
∂z

∂y
= −

Fy

Fz

∇f x,y,z( ) = fx x,y,z( )i + fy x, y,z( )j+ fz x, y,z( )k

∇f =
∂f

∂x
,
∂f

∂y
,
∂f

∂y
=

∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

∆w ≈ ∇f P( )⋅ v,v = PQ = ∆x,∆y,∆z

Du f P( ) = ∇f P( ) ⋅ u,   u =
v
v

D1 f r t( )( ) = ∇f r t( )( ) ⋅ r' t( )

Tangent Plane to a Surfave F (x, y,z) at P = (a,b,c)

Fx(x,y,z) x - a( ) + Fy(x, y,z) y - b( ) + Fz(x,y,z) z - c( ) = 0

A = fxx a,b( ),   B = fxy a,b( ),   C = fyy a,b( )
∆ = D = AC − B2 = fxx a,b( ) fyy a,b( ) − fxy a,b( )[ ]2

If ∆ > 0 and A > 0, then f has a local minimum at a , b( )
If ∆ > 0 and A < 0, then f has a local maximum at a , b( )
If ∆ < 0, then f has a saddle point at a , b( )
If ∆ = 0, no information is known for f at point a,b( )

Volume =V = f x,y( )
R

∫∫ dA

f x,y( )
R

∫∫ dA =

f x, y( )
c

d

∫ dy
 
 
  

 
 dx

a

b

∫ = f x,y( )
a

b

∫ dx
 
 
  

 
 dy

c

d

∫
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LaGrange Multipliers

Constraint :  g(x, y) = 0

Check Critical Points of F x ,y ,( ) = f x, y( ) − g x, y( )
∂f
∂x

,
∂f
∂y

 
 
  

 
= ∂g

∂x
,
∂g
∂y

 
 
  

 

∂f

∂x
−

∂g

∂x

 
 

 
 = 0 ,   

∂f

∂y
−

∂g

∂y

 
 
  

 
= 0

x 2 + y 2 + z2 = a2  Sphere w/ Radius a

x 2

a2
+

y 2

b2
+

z2

c 2
=1  Ellipsoid

x 2

a2
+ y 2

b2
− z 2

c2
=1  Hyperboloid,  1 Sheet,  z - a x i s

x 2

a2
− y2

b2
+ z 2

c2
=1  Hyperboloid,  1 Sheet,  y - a x i s

−
x2

a2
+

y2

b2
+

z 2

c2
=1  Hyperboloid,  1 Sheet,  x - a x i s

x 2

a2
− y2

b2
− z2

c 2
=1  Hyperboloid,  2 Sheets,  yz-plane

− x2

a2
+ y2

b2
− z2

c 2
=1  Hyperboloid,  2 Sheets,  xz-plane

−
x2

a2
−

y 2

b2
+

z2

c 2
=1  Hyperboloid,  2 Sheets ,  xy-plane

A(y) = f x, y( )dx
a

b

∫

A(x) = f x, y( )dy
c

d

∫

Vertically Simple :  f x , y( )dA
R

∫∫

V = f x , y( )dydx
y1 x( )

y 2 x( )

∫
a

b

∫

Horizontally Simple :  f x , y( )dA
R

∫∫

V = f x , y( )dxdy
x1 y( )

x 2 y( )

∫
c

d

∫
Volume Between Two Surfaces

V = z top − zbottom( )dA
R

∫∫
Polar :   a ≤ r ≤ b,   ≤ ≤

A =
1

2
a + b( ) a −b( ) −( ) = r∆r∆

V = f rcos ,rsin( )
a

b

∫∫ rdrd
mass = m = x,y( )

R
∫∫ dA

Centroid :  x, y( )
x =

1

m
x x, y( )dA

R
∫∫

y = 1
m

y
R

∫∫ x, y( )dA

Polar Moments of Inertia

Ix = y 2 x, y( )dA
R

∫∫
Iy = x 2 x, y( )dA

R
∫∫

Kinetic Energy due to Rotation

KErot =
1

2
2r 2 dA =

R
∫∫ 1

2
I0

2

 is angular speed

Radius of Gyration

ˆ r =
I

m
I is moment of inertia, m is mass around axis

ˆ x =
I x

m
     ˆ y =

Iy

m
 

I0 = mˆ r 2    KE =
1

2
m ˆ r ( )2

mass = m = x, y,z( )
T

∫∫∫ dV

Volume =V = dV
T

∫∫∫Centroid :  x, y, z( )
x = 1

m
x x, y,z( )dA

T
∫∫∫

y =
1

m
y x, y,z( )dA

T
∫∫∫

z =
1

m
z x, y,z( )dA

T
∫∫∫

Moments of Inertia

Ix = y 2 + z2( )
T

∫∫∫ x, y,z( )dA

Iy = x 2 + z2( )
T

∫∫∫ x, y,z( )dA

Iz = x2 + y2( )T
∫∫∫ x, y,z( )dA

Cylindrical x = rcos ,   y = rsin ,    z = z

V = f rcos ,rsin ,z( )
U

∫∫∫ rdzdrd

Sphererical x = sin cos ,y = sin sin ,z = cos

V = f sin cos , sin sin , cos( )
U

∫∫∫ 2 sin d d d

Parametric

ru =
∂r
∂u

= xu,yu,zu =
∂x

∂u
i +

∂y

∂u
j +

∂z

∂u
k

rv = ∂r
∂v

= xv, yv,zv = ∂x
∂v

i + ∂y
∂v

j+ ∂z
∂v

k

Surface Area

A = a S( ) = 1+ ∂f
∂x

 
 

 
 

2

+ ∂f
∂y

 
 
  

 

2

dxdy
R

∫∫

Cylindrical Surface Area

A = a S( ) = r2 + r
∂f
∂r

 
 

 
 

2

+ ∂f
∂

 
 

 
 

2

drd
R

∫∫
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Change of Variable

F x, y( )
R

∫∫ dxdy

x = f u,v( )     y = g u , v( )
u = h x, y( )    v = k x , y( )

Jacobian: JT u,v( ) =
fu u,v( ) fv u,v( )
gu u,v( ) gv u,v( )

=
∂ x,y( )
∂ u,v( )

F x, y( )dxdy =
R

∫∫ F f u,v( ),g u,v( )( ) JT u,v( )dudv
S

∫∫

F x, y( )dxdy =
R

∫∫ G u,v( ) ∂ x, y( )
∂ u,v( )

dudv
S

∫∫

x = f u,v ,w( )     y = g u , v , w( )    z = hu,v ,w( )

Jacobian: JT u,v( ) =
∂ x,y,z( )
∂ u,v,w( )

=

∂x
∂u

∂x
∂v

∂x
∂w

∂y

∂u

∂y

∂v

∂y

∂w
∂z
∂u

∂z
∂v

∂z
∂w

F x,y,z( )dxdy
T

∫∫∫ dz = G u,v,w( ) ∂ x,y,z( )
∂ u,v,w( )

dudv
S

∫∫∫ dw

F x,y( ) = xi + yj = x 2 + y 2 = rVelocity Vector

v x,y( ) = −yi + xj( )
Force Field

F x, y,z( ) = −
kr
r 3

k = G ⋅ M

∇ af + bg( ) = a∇f + b∇g

∇ fg( ) = f∇g + g∇f

div F = ∇ ⋅F =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

F x, y,z( ) = P x,y,z( )i + Q x,y,z( )j + R x, y,z( )k

∇ ⋅ aF + bG( ) = a∇ ⋅F + b∇ ⋅G,

∇ ⋅ fG( ) = f( ) ∇ ⋅G( ) + ∇f( )⋅ Gcurl F = ∇ ×F =

i j k
∂
∂x

∂
∂y

∂
∂z

P Q R

curl F = ∂R
∂y

− ∂Q
∂z

 

 
  

 

 
  i + ∂P

∂z
− ∂R

∂x

 
 
 

 
 
 j + ∂Q

∂x
− ∂P

∂y

 

 
  

 

 
  k

∇ × aF + bG( ) = a ∇ ×F( ) + b ∇ ×G( ),
∇ × fG( ) = f( ) ∇ ×G( ) + ∇f( ) ×G

f x, y,z( )ds = lim
∆t →1

C

∫ f x ti
*( ),y t i

*( ),z ti
*( )( )∆si

f x, y,z( )ds = f x t( ),y t( ),z t( )( ) x ' t( )( )2
+ y ' t( )( )2

+ z' t( )( )2

a

b

∫
C

∫ dt

mass = x,y,z( )ds
C

∫

x = 1
m

x x,y,z( )ds
C

∫

y =
1

m
y x,y,z( )ds

C

∫

z = 1
m

z x,y,z( )ds
C

∫
Centroid : x ,y ,z ( )

Moment of Inertia

I = w2 x,y,z( )ds
C

∫
w = w x,y,z( ) = ⊥ distance

from x , y , z( )  to axis

f x, y,z( )dx = f x t( ), y t( ),z t( )( )
a

b

∫
C

∫ ⋅ x ' t( )dt

f x, y,z( )dy = f x t( ), y t( ),z t( )( )
a

b

∫
C

∫ ⋅ y ' t( )dt

f x, y,z( )dz = f x t( ), y t( ),z t( )( )
a

b

∫
C

∫ ⋅ z' t( )dt

P x, y,z( )dx +
C

∫ Q x, y,z( )dy + R x, y,z( )dz =

P x t( ), y t( ),z t( )( )
a

b

∫ ⋅ x ' t( )dt +

Q x t( ), y t( ),z t( )( )
a

b

∫ ⋅ y ' t( )dt +

R x t( ),y t( ),z t( )( )
a

b

∫ ⋅ z' t( )dt

f x, y,z( )ds =
−C

∫ f x, y,z( )ds
C

∫
Pdx + Qdy + Rdz =

−C

∫ − Pdx + Qdy + Rdz
C

∫
Work

W = F ⋅ Tds
a

b

∫

W = Fdr
a

b

∫

W = Pdx + Qdy + Rdz
a

b

∫

∇f ⋅ dr
C

∫ = f r b( )( )
C

∫ − f r a( )( ) = f B( ) − f A( )

F ⋅ T
C

∫ ds = F
C

∫ dr = Pdx + Qdy + Rdz

F ⋅ T
C

∫ ds = F ⋅ Tds
A

B

∫

W = F ⋅ T
C

∫ ds = k w ⋅ T
C

∫ ds

w = velocity vector

f x,y,z( ) = F ⋅ Tds
C

∫ = F ⋅ Tds
x 0,y 0z( )0

x ,y,z( )

∫

W = F ⋅ dr
A

B

∫ =V A( ) −V B( )

Flux of a Vector

Field across C

F ⋅ n ds
C

∫

n =
dy

ds
i −

dx

ds
j
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The Line Integral F ⋅ T
C

∫ ds is independent

of path in the region D iff F = ∇f  for some

funtion f defined on D

The vector field F defined on region D is conservative

provided that there exists a scalar funtion f defined on

D such that

F = ∇f

at each point of D, f is a potential funtion for FF ⋅ T
A

B

∫ ds = ∇f ⋅ dr
A

B

∫ = f B( ) − f A( )

Continuous funtions P x,y( )  and Q x,y( )  have 

continuous 1st order partials in R = { x , y( ) |

a < x < b,  c < y < d Then the vector field 

F = Pi +Qj is conservative in R and has a

potential funtions f x, y( ) on R irr at each point

of R

∂P

∂y
= ∂Q

∂x

Newton's First Law gives:

F r t( )( ) = mr" t( ) = mv' t( )
dr = r ' t( )     dt = v t( )

F ⋅ dr
A

B

∫ =
1

2
m vB( )2 −

1

2
m vA( )2

1

2
m vA( )2 + V A( ) =

1

2
m vB( )2 +V B( )

Green's Theorem

Pdx + Qdy = ∂Q

∂x
− ∂P

∂y

 

 
  

 

 
  

R

∫∫
C

∫ dA

Pdx = −
∂P

∂y
dA

R

∫∫
C

∫

Qdy = + ∂Q
∂x

dA
R

∫∫
C

∫

A =
1

2
−ydx + xdy = −

C

∫ ydx =
C

∫ xdy
C

∫

F ⋅ nds =
∂M

∂x
+

∂N

∂y

 

 
  

 

 
  

R

∫∫
C

∫ dA

div F = ∇ ⋅F =
∂M

∂x
+

∂N

∂y

F ⋅ nds = ∇ ⋅FdA
R

∫∫
C

∫

∇ ⋅F{ } x0, y0( ) = lim
r →0

1

πr2 F ⋅ nds
Cr

∫

N =
∂r
∂u

×
∂r
∂v

=

i j k
∂x

∂u

∂y

∂u

∂z

∂u
∂x
∂v

∂y
∂v

∂z
∂v

A ≈ N ui ,v i( )∆u∆v
i=1

n

∑

m ≈ f r ui,vi( )( ) N ui ,v i( ) ∆u∆v
i=1

n

∑

f x,y,z( )dS = f r ui,v i( )( ) N ui,vi( ) dudv
D

∫∫
S

∫∫

= f r ui,vi( )( ) ∂r
∂u

×
∂r
∂v

dudv
D

∫∫

dS = N ui,v i( ) dudv = ∂r
∂u

× ∂r
∂v

dudv

N =
∂r
∂u

×
∂r
∂v

=
∂ y,z( )
∂ u,v( )

i +
∂ z, x( )
∂ u,v( )

j+
∂ x, y( )
∂ u,v( )

k

f x,y,z( )dS
S

∫∫

= f x u,v( ), y u,v( ),z u,v( )( ) ∂ y,z( )
∂ u,v( )

 

 
  

 

 
  

2

+
∂ z,x( )
∂ u,v( )

 

 
  

 

 
  

2

+
∂ x, y( )
∂ u,v( )

 

 
  

 

 
  

2

S

∫∫ dudv

z = h x, y( ) in xy -plane

dS = 1+ ∂h
∂x

 
 
 

 
 
 

2

+ ∂h
∂y

 

 
  

 

 
  

2

dxdy

f x,y,z( )
S

∫∫ dS = f x, y,h x,y( )( )
S

∫∫ 1+
∂h

∂x

 
 
 

 
 
 

2

+
∂h

∂y

 

 
  

 

 
  

2

dxdy

R r ui,vi( )( )
i=1

n

∑ cos N ui ,v i( )∆u∆v

≈ R r ui,vi( )( )
D

∫∫ N ui ,v i( ) dudv
n =

N
N

= cos( )i + cos( )j + cos( )k

F ⋅ n = P cos + Qcos + R cos

Flux  across S in 

the direction of n

= F ⋅ ndS
S

∫∫

Divergence Theorem

F ⋅ ndS =
S

∫∫ ∇ ⋅FdV
T

∫∫
div F{ } P( ) = lim

r→0

1

Vr

F ⋅ ndS
Sr

∫∫
S o u r c e :  div F{ } P( ) > 0

S i n k :  div F{ } P( ) < 0

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
=

1

k
⋅
∂u

∂t

k =Thermal Diffusivity

F ⋅ TdS = curlF( )
R

∫∫
C

∫ ⋅ kdA
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cos = n ⋅ i =
N ⋅ i
N

=
1

N
∂ y,z( )
∂ u,v( )

cos = n ⋅ j =
N ⋅ i
N

=
1

N
∂ z,x( )
∂ u,v( )

cos = n ⋅ k =
N ⋅ i
N

=
1

N
∂ x, y( )
∂ u,v( )

P x,y,z( )
S

∫∫ dydz = P x,y,z( )
S

∫∫ cos dS = P r u,v( )( )
D

∫∫ ∂ y,z( )
∂ u,v( )

dudv

Q x,y,z( )
S

∫∫ dydx = Q x,y,z( )
S

∫∫ cos dS = Q r u,v( )( )
D

∫∫ ∂ z,x( )
∂ u,v( )

dudv

R x, y,z( )
S

∫∫ dxdy = R x,y,z( )
S

∫∫ cos dS = R r u,v( )( )
D

∫∫ ∂ x, y( )
∂ u,v( )

dudv

Pdydz + Qdzdx + Rdxdy
S

∫∫
= P cos + Qcos + Rcos( )dS

S

∫∫

= P
∂ y,z( )
∂ u,v( )

+ Q
∂ z,x( )
∂ u,v( )

+ R
∂ x,y( )
∂ u,v( )

 

 
  

 

 
  dudv

D

∫∫

F ⋅ ndS = Pdydz + Qdzdx + Rdxdy
S

∫∫
S

∫∫

= −P
∂z
∂x

− Q
∂z
∂y

+ R
∂z
∂z

 

 
  

 

 
  

D

∫∫ dxdy

Heat -Flow Vector

q = −K∇u

K =Heat Conductivity

q ⋅ ndS = − K∇u
S

∫∫
S

∫∫ ⋅ ndS

Gauss' Law for flux

= F ⋅ ndS = −4πGM
S

∫∫
Gauss' Law for electric fields

= E ⋅ ndS =
Q

0S

∫∫

P cos + Qcos + Rcos( )
S

∫∫ dS

= Pdydz + Qdzdx + Rdxdy( )
S

∫∫

= ∂P

∂x
+ ∂Q

∂y
+ ∂R

∂z

 

 
  

 

 
  dV

T

∫∫∫

Pdydz
S

∫∫ = ∂P
∂xT

∫∫∫ dV

Qdzdx
S

∫∫ =
∂Q

∂yT

∫∫∫ dV

Rdxdy
S

∫∫ = ∂R
∂zT

∫∫∫ dV
S3 is SA between S1 and S2

Rdxdy =
s3

∫∫ Rcos dS =
s3

∫ 0∫
Rdxdy =

s2

∫∫ R x, y,z2 x, y( )( )dxdy
s2

∫∫
Rdxdy =

s1

∫∫ − R x,y,z1 x, y( )( )dxdy
D

∫∫

∇ ⋅F
T

∫ dV = F ⋅ ndS
S

∫∫∫∫
= F ⋅ n2dS

S2

∫∫ − F ⋅ n1dS
S1

∫∫

F ⋅ ndS =
S

∫∫ F ⋅ ndS
Sa

∫∫

= − GMr

r
3

⋅ r
r

dS
Sa

∫∫

= −GMr
a2

1dS
Sa

∫∫
= −4πGM

Stokes' Theorem

F ⋅ TdS = curlF( )
S

∫∫
C

∫ ⋅ ndA

Pdx + Qdy + Rdz =
∂R

∂y
−

∂Q

∂z

 

 
  

 

 
  

S

∫∫
C

∫ dydz +
∂P

∂z
−

∂R

∂x

 
 
 

 
 
 dzdx +

∂Q

∂x
−

∂P

∂y

 

 
  

 

 
  dxdy

Pdx = −
∂P

∂y

∂y

∂y
+

∂P

∂z

∂z

∂y

 

 
  

 

 
  

D

∫∫
C

∫ dxdy

∂P

∂z
dzdy − ∂P

∂z
dxdy

 
 
 

 
 
 

S

∫∫

= − ∂P
∂z

∂z
∂y

− ∂P
∂y

∂y
∂y

 

 
  

 

 
  

D

∫∫ dxdycurlF( ) ⋅ n{ } P( ) = lim
r→0

1

πr 2 F ⋅ Tds
C r

∫

Γ C( ) = F ⋅ Tds
C

∫

curlF( ) ⋅ n{ } P*( ) ≈
Γ Cr( )
πr2

A vector field is irrotational iff

It is conservative and

F = ∇  for some scalar 

x, y,z( ) = F ⋅ T
C1

∫ ds div v dV
T

∫∫∫ = v ⋅ ndS = 0
S

∫∫

div ∇( ) =
∂2

dx 2 +
∂2

dy2 +
∂2

dz 2 = 0

∂2u

dx2
+ ∂2u

dy 2
+ ∂2u

dz2
= 0
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F =
q1 ⋅ q2

4π ⋅ 0 ⋅ r 2

Electric Charge

Charges with the same electrical

sign repel each other, and charges

with opposite electrical sign attract
k =

1

4π ⋅ 0

≈ 9 ×109 N ⋅ m 2

C

e− ≈1.6 ×10−19C A shell of uniform charge

attracts or repels a charged

particle that is outside the

shell as if all the shell's charge

were concentrated at its center

A shell of uniform charge 

exerts no electrostatic force

on a charged particle that is

located inside the shell.

q = n ⋅ e,  n= ±1,±2 , . . .

Electric Fields

E = F
q0

Electric field lines extend

away from positive charge

and toward negative charge

Point Charge

E = k
q

r2

Electric Dipole

p = Dipole Moment

E = k
2p
z 3

≈
3 p ⋅ ˆ r ( ) − p

4π ⋅ 0 ⋅ z3

Charged Ring

E = q ⋅ z

4π ⋅ 0 z2 + R2( )3 2

Charged Disk

E =
2 0

1− z

z2 + R2

 

 
  

 

 
  

Torque

t = p ×E

Potential Energy

Of A Dipole

U = −p ⋅ E

Gauss' Law :  0 ⋅ Φ =Qenclosed

Flux = Φ = E ⋅ dA∫ =
Qenclosed

0

Conducting Surface

E =
0

Line Of Charge

E =
2π ⋅ 0 ⋅ r

Sheet Of Charge

E =
2 0

Spherical Shell

Field At r ≥ R

E = q
4π ⋅ 0 ⋅ r 2

Spherical Shell

Field At r < R

E = 0

Electric Potential

∆U = q ⋅ ∆W

∆V =V f −Vi = −
W

q

Vi = −
W∞

q

Electric Potential

V f −Vi = − E ⋅ ds
i

f

∫ = VElectric Potential

V = k
q

r
= k ⋅ qi

rii=1

n

∑

Electric Diplole

V = k
p ⋅ cos( )

r2

V = k ⋅
dq

r
∫ ES = −

V

s
E = − ∇V

U = W = k
q1 ⋅ q2

r
Capacitance

C =
Q

V

Parallel Plate

Capacitor

C = 0 ⋅ A
d

Cylindrical 

Capacitor

C = 2π ⋅ 0

L
ln b a( )

Spherical

Capacitor

C = 4π ⋅ 0

a ⋅ b
b − a

Isolated Sphere

C = 4π ⋅ 0 ⋅ R

Parallel

Ceff = Ci

i=1

n

∑
Series

1

Ceff

=
1

Cii=1

n

∑Potential Energy

U =
Q2

2C
=

1

2
C ⋅V 2

Energy Density

u =
Q2

2C
=

1

2 0 ⋅ E 2 Dielectric

C = ⋅ Cair

0 ⋅ k ⋅ E ⋅ dA = Qenclosed∫

Current

i =
dq

dt

Current Density

i = J ⋅ dA∫
Current Density

J =
i

A
, Constant

J = n ⋅ e ⋅ vdrift
Resistance

R =
V

i
, Ohm's Law Resistivity

=
E

J

Conductivity

=
1

E = ⋅ J

Resistance is a property of an object

Resistivity is a property of a material
R =

L

A− 0 = 0 ⋅ T −T0( )
Power,  Rate Of Transfer

Of Electrical Energy

P = i ⋅ V

Resistive Dissapation

P = i2 ⋅ R =
V 2

R

Resistivity Of A Conductor

(Such As Metal)

= m
e2 ⋅ n ⋅

EMF

=
dW

dq

i =
R

Kirchoff's Loop Rule

The sum of the changes in

potential in a loops of a 

circuit must be zero

Parallel

1

Reff

=
1

Rii=1

n

∑

Series

Reff = Ri

i=1

n

∑
EMF Power

Pemf = i ⋅Kirchoff's Junction Rule

The sum of the currents entering

any junction must equal the sum

of the currents leaving that junction
Charging A Capacitor

q t( ) = C ⋅ 1−e−t R ⋅C( )
i t( ) =

R
⋅ e− t R ⋅C

i t( ) =
dq

dt

Charging A Capacitor

VC = 1− e− t R ⋅C( )

Discharging A Capacitor

q t( ) = q0 ⋅ e−t R ⋅C

i t( ) = −
q0

R ⋅ C
⋅ e− t R ⋅C



Page 2

Physics Reference                   Electricity & Magnetism                James Lamberg
Magnetic Fields, B

FB = q ⋅ v ×B

Right Hand Rule, Positive Charge

Thumb Up, Pointer Pointing

and Middle Finger Perpendicular

Thumb =Magnetic Force Direction

Pointer =Velocity Direction

Middle =Magnetic Field Direction

Opposite magnetic poles attract

Like magnetic poles repel

Hall Effect

V = E ⋅ d

n = B ⋅ i
V ⋅ l ⋅ e

Circular Charged Path

q ⋅ v ⋅ B =
m ⋅ v2

r

Mass Spectrometer

v =
2 ⋅ q ⋅V

m

m =
B2 ⋅ q ⋅ x 2

8V

Resonance Condition

f = fosc

f =
2π

= 1
T

= q ⋅ B
2π ⋅ m

Force On A Current

dFB = i ⋅ dL ×B

Magnetic Dipole Moment

= N ⋅ i ⋅ A, Moment

t = × B

Magnetic Potential Energy

U( ) = − ⋅ BBiot -Savart Law

Like "Leo Bazaar"

dB = 0

4π
i ⋅ ds ×r

r3 0 = 4π ×10−7 T ⋅ m

A

Long Straight Wire

B = 0 ⋅ i

2π ⋅r

Right Hand Rule

Grasp the element with thumb

pointing in the direction of the

current,  fingers curl in the 

direction of the magnetic field

Parallel currents

attract and

AntiParallel 

currents repel

Center Of Circular Arc

B = 0 ⋅ i ⋅
4π ⋅ R

Force Between Two

Parallel Wires

F = 0 ⋅ i1 ⋅ i2

2π ⋅d
L

Ampére's Law

B ⋅ ds∫ = 0 ⋅ ienclosed

Ideal Solenoid

n = turns per unit length

B = 0 ⋅ i ⋅ n

Torid

B = 0 ⋅ i ⋅ N turns

2π ⋅r

Current Carrying Coil

B z( ) = 0 ⋅
2π ⋅ z3

Current Loop + Magnetic Field ⇒  Torque

Torque + Magnetic Field ⇒  Current? YES

Magnetic Flux

ΦB = B ⋅ dA∫
Faraday's Law

= −
dΦB

dt

Coil Of N Turns

= −N ⋅
dΦB

dt

A changing magnetic field

produces an electric field Faraday's Law

E ⋅ ds∫ =
dΦB

dt
=

Inductance

L =
N ⋅ ΦB

i

Solenoid

L = 0 ⋅ n2 ⋅ A ⋅ l

Self Induced emf

L = −L
di

dt

Rise Of Current (Inductor)

i =
R

1− e− t L( ),  L =
L

R

Decay Of Current (Inductor)

i =
R

e− t L = i0 ⋅ e−t L ,  L =
L

R
Magnetic Energy

UB =
1

2
L ⋅ i2

Magnetic Energy Density

uB = B2

2 0

Mutual Inductance

2 = −M
di1
dt

= 1 = −M
di2

dt

Gauss' Law,  Magnetic Fields

ΦB = B ⋅ dA∫ = 0

Maxwell's Equations

Gauss' Law For Electricity

E ⋅ dA∫ = qenc

e0

Gauss' Law For Magnetism

B ⋅ dA∫ = 0

Faraday's Law

E ⋅ ds∫ = −dΦB

dt
Ampére-Maxwell Law

B ⋅ ds∫ = 0 ⋅ 0

dΦE

dt
+ 0 ⋅ ienc

Spin Magnetic Dipole Moment

s = −
e

m
⋅ S

Bohr Magneton

B = −
e ⋅ h

4π ⋅ m
≈ 9.27 ×10−24 J

T
Potential Energy

U = − s ⋅ B ext = − s,z ⋅ B

Orbital Magnetic 

Dipole Moment

orb = − e
2m

Lorb

Potential Energy

U = − orb ⋅ B ext = − orb,z ⋅ Bext

Inside A Circular Capacitor

B = 0 ⋅ id

2π ⋅R2
r

Outside A Circular Capacitor

B = 0 ⋅ id

2π ⋅r

Displacement Current

id = 0

dΦE

dt
i = id , Capacitor

Speed Of Light

c =
1

0 ⋅ 0

Potential

UE =
q2

2C

Potential

UB =
L ⋅ i

2

LC Circuit

LC = 1

L ⋅ C



Page 3

Physics Reference                   Electricity & Magnetism                James Lamberg
RLC Circuit

L
di

dt
+ i ⋅ R +

Q

C
= 0

q t( ) = A ⋅ e−t 2 LR ⋅ cos LC ⋅ t −( )
LR =

L

R

= LC

2 −
1

2 LR

 

 
  

 

 
  

2LC Circuit

L
d2q
dt2

+ q
C

= 0

q t( ) = Q ⋅ cos ⋅ t +( )
i t( ) = − ⋅ Q ⋅ sin ⋅ t +( )

UE = Q2

2C
⋅ cos2 ⋅ t +( )

UB =
Q2

2C
⋅ sin2 ⋅ t +( )

U =
Q2

2C
e−t LR

RLC Circuit w/ AC

L
di
dt

+ i ⋅ R + Q
C

= B ⋅ sin d ⋅ t( )
i t( ) = iB ⋅ sin d ⋅ t −( )
iB = B Z

Capacitive Reactance

XC = 1

d ⋅ C
Inductive Reactance

XL = d ⋅ L

Phase Constant

tan( ) =
XL − XC

R

Impedance

Z = XL − XC( )2 + R2

Current Amplitude

i = B

Z

Resonance

d = = 1

L ⋅ C

rms current

irms = i

2
Average Power

Pav = irms

2 ⋅ R

Not "rms Power"
rms potential

Vrms = V

2
, rms = B

2

Average Power

Pav = rms ⋅ irms ⋅ cos( )

Transformer Voltage

V2nd =V1st

N2nd

N1st

Transformer Current

i2nd = i1st

N1st

N2nd

Resistance Load at Generator

Req = N1st

N2nd

 

 
  

 

 
  

2

⋅ R

Maxwell's Equations (Derviative)

∇ •E =
0

∇ •B = 0

∇ ×E = − B
t

∇ ×B = 0 ⋅ J +
1

c2
⋅

E
dt

Maxwell's Equations (Integral)

E ⋅ dA∫ = qenc

0

B ⋅ dA∫ = 0

E ⋅ ds∫ = −d
dt

B ⋅ dA∫

B ⋅ ds∫ = 0 ⋅ ienc +
1

c2

d

dt
E ⋅ dA∫

Average Power relates

to the heating effect

RMS Power, while it

can be calculated is worthless
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P and Q is P ∧Q

P or Q is P ∨Q

not P is ¬P

if P then Q is P ⇒ Q

P if and only if Q is P ⇔Q

¬ P ∧ Q( )  is ¬P ∨¬Q

¬ P ∨ Q( )  is ¬P ∧¬Q

¬ P ⇒ Q( )  is P ∧ ¬Q

¬Q ⇒ ¬P is contrapositive of P ⇒ Q

and these are equivalent

Q ⇒ P is converse of P ⇒ Q

and these may not be equivalent

P is a necessary condition for Q :  Q ⇒ P

P is a sufficient condition for Q :  P ⇒ Q

N =  Set of positive int egers

Z =  Set of all i n tegers

Q =  Set of rational numbers

R =  Set of real numbers

Existential Quantifier :

∀x :  for all/every x

Universal Quantifier :

∃x :  there exists x

∈:  element of

Mathematical Induction :

1) ∀n ∈ N,  P rove Base Case that

  P 1( )  is true

2)Assume P n( )  and ∀n ∈ N,

  show P n( ) ⇒ P n +1( )

The set A is finite if A = ∅ or for some n ∈ N,  

A has exactly n members.

The set A is infinite if A is not finite.

Pr inciple of Mathematical Induction

Let P n( ) be a mathematical statement,  if

a) P 1( )  is true,  and

b) for every n ∈ N

  P n( ) ⇒ P n +1( )  is true,  

  then P n( ) is true for every n ∈ N

Strong Induction

1) P 1( ) is true,  and

2) for each n ∈ N,  if each P 1( ),...,P n( )  is true[ ],
  then P n +1( )  is true,  then P n( )  is true ∀n ∈ N

Well Ordering Property of N :

Every nonempty subset of N has 

a smallest memeber

Bounds:  Suppose A is a set of real numbers

1)  r ∈ R is an upper bound of A if no member

  of A is bigger than r :  ∀x ∈ A x ≤ r[ ]
2)  r ∈ R is a lower bound of A if no member

  of A is smaller than r :  ∀x ∈ A r ≤ x[ ]
3) A is bounded above if ∃r ∈ R which is an 

  upper bound of A

  A is bounded below if ∃r ∈ R which is a 

  lower bound of A

  A is bounded if if is bounded above and below

The least upper bound, r, of A is the supremum

of and is denoted sup A,  that is r =sup A if:

a) r is an upper bound of A, and

b) r ≤ r' for every upper bound r'  of A

The greatest lower bound,  r, of A is the infimum

of and is denoted inf A, that is r =inf A if:

a) r is a lower bound of A, and

b) r ≥ r' for every upper bound r'  of A

sup A exists if A has a least upper bound and

inf A exists if A has a greatest lower bound

Completeness Axiom:Every nonempty 

subset of R which is bounded above has

a least upper bound

Archimedean Property of N :

N is not bounded above

For every positive real number x,  there is

some positive i n teger n such that 0 <
1

n
< x

For all real numbers x and y such that x < y,

there is a rational number r such that x < r < y

For all real numbers x and y such that x < y,

there is an irrational number ir  such that x < ir < y

There is no rational number r such that r 2 = 2

There is a real number x such that x2 = 2
Let n ∈ N. For every real number y > 0,

there is a real number x > 0 such that xn = y

Completeness Axiom Corollary :Every

nonempty subset of R which is bounded

below has a greatest lower bound
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A sequence is a function whose domain is a 

set of the form n ∈ Z : n ≥ k{ },  where k ∈ Z

If s is a sequence,  sn  is the value of the 

sequence at arg ument n .

Given  an{ } and bn{ } with domain D :

 an + bn{ } is sn = an + bn  ∀n ∈ D

 an − bn{ } is sn = an − bn  ∀n ∈ D

 an ⋅ bn{ } is sn = an ⋅ bn  ∀n ∈ D

 
an

bn

 
 
 
  

 
 
 
   is sn =

an

bn

 ∀n ∈ D,bn ≠ 0

 c ⋅ an{ } is sn = c ⋅ an ∀n ∈ D

Definition of a Limit :

Let L be a real number.

lim
n→∞

sn = L    iff

∀ > 0 ∃n0 ∀n ≥ n0 sn − L <[ ]
The sequence s converges to L if lim

n →∞
sn = L .

The sequence s is convergent if there is some

L such that s converges to L.

The sequence s is divergent if is is not convergent

lim
n→∞

sn = L is

limsn = L is

sn → L

If lim sn = L0 and sn = L1,  then  L0 = L1

The sequence  sn{ } is bounded if 

there is some r ∈ R such that sn ≤ r 

for all n in the domain of  sn{ }.
If a sequence is convergent,

then it is bounded

Suppose l i msn = L1,  and lim tn = L2,  and c ∈ R.

a)  l imsn + tn( ) = L1 + L2

b) lim c ⋅ sn( ) = c ⋅ L1

c) lim sn ⋅ tn( ) = L1 ⋅ L2

d) lim
sn

tn

 

 
  

 

 
  =

L1

L2

,  L2 ≠ 0 and ∀n tn ≠ 0[ ]

Suppose that for all sufficiently large n,

an ≤ bn ≤ cn

If lim an = L and limcn = L then limbn = L

If lim sn = 0 ,  then l i msn = 0

Suppose :  l i man = L,  and f is a function which

is continuous at L,  and for each n,  an is in the

domain of f . Then lim f an( ) = f L( )
f is continuous at x if for any > 0 there exists

some > 0 so that if z - x < ,  then f z( ) - f x( ) <
The set of reals R is the completion of the set

of i n tegers Q. Or R = sup A | A ⊆ Q{ }

Let sn = f n( ).  If lim
x →∞

f x( ) = L,  then lim sn = L

Let sn = f
1

n

 
 
 

 
 
 .  If lim

x →0+
f x( ) = L,  then l i msn = L

Let sn{ } be a sequence.  lim sn = ∞ if :

∀M∃n0∀n ≥ n0 sn ≥ M[ ]
limsn = − ∞ if :

∀M∃n0∀n ≥ n0 sn ≤ M[ ]The sequence sn{ } is:

increasing if for all n,  sn ≤ sn+1

strictly increasin g if for all n,  sn < sn+1

decreasin g if for all n,  sn ≥ sn +1

strictly decreasin g if for all n,  sn > sn+1

monotonic if any of the above are true

Suppose sn{ } is monotonic.  Then 

sn{ } converges iff it is bounded.

Re cursively Defined Sequence is 

defined in terms of sn  for each n .

The sequence sn{ } is a Cauchy sequence

if for every > 0, there is some n0 such 

that sm - sn <  for all m,  n ≤ n0

Cauchy sequences are bounded and converge

f x( )
a

∞

∫ dx = limsn = lim
n →∞

f x( )
a

n

∫ dx

f is continuous and x ≥ a

If f x( )
a

∞

∫ dx converges

then f x( )
a

∞

∫ dx converges

If lim a i ≠ 0, then a i
i=1

∞

∑  is divergent

Geometric Series :  a and r are real

a ⋅ r i,  with r being the ratio
i =0

∞

∑
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Comparison Test

0 ≤ f x( ) ≤ g x( ), x ≥ a

i)If f x( )
a

∞

∫ dx converges,  then g x( )
a

∞

∫ dx converges

and f x( )
a

∞

∫ dx ≤ g x( )
a

∞

∫ dx

ii)If f x( )
a

∞

∫ dx diverges,  then g x( )
a

∞

∫ dx diverges

Given a sequence An{ } we form Sn{ } by :

Sn = ai
i=1

n

∑
i)  If Sn{ } converges,  we say the i n finite series :

ai
i=1

n

∑  converges to ai
i=1

n

∑ = limSn ,  the value of the series

ii) If Sn{ } diverges,  we say the i n finite series :

ai
i=1

n

∑  diverges also. 

iii) If l i mSn = ∞ we say :  ai
i=1

n

∑ = ∞ and 

the series diverges to inf inity. 

iv) If lim Sn = ∞ we say :  ai
i=1

n

∑ = − ∞ and 

the series diverges to min us i n finity. 

  

i) Suppose  ai
i=1

∞

∑  is convergent,  for c ∈ R,

c ⋅ ai
i=1

∞

∑ = c ai
i=1

∞

∑
 

 
  

 

 
  

ii) If  ai
i=1

∞

∑  is convergent,  and bi
i=1

∞

∑  is convergent

then ai + bi( )
i=1

∞

∑  is convergent and :

ai + bi( )
i=1

∞

∑ = ai
i=1

∞

∑  + bi
i=1

∞

∑  

i )  If  r< 1 then the geometric series

a ⋅ r i

i= 0

∞

∑  converges to 
a

1 - r

ii) If r≥1 and a ≠ 0 then

a ⋅ r i

i= 0

∞

∑  diverges

1

x p
1

∞

∫ dx converges if p > 1

and diverges if p ≤1

n − th term test for divergence

If l i m  an ≠ 0, then an

n =1

∞

∑  is divergent

Integral Test

f is continuous and decreasing on the i n terval 1, ∞[ )
and f x( ) ≥ 0 for x ≥1

f n( ) converges iff f n( )
1

∞

∫
n =1

∞

∑  converges.

1

x p
n=1

∞

∑  converges if p > 1

and diverges if p ≤1

Comparison Test   0 ≤ an ≤ bn

an{ } and bn{ } are sequences

If bn
n =1

∞

∑  converges then an
n =1

∞

∑  converges

If an
n =1

∞

∑  diverges then bn
n =1

∞

∑  diverges

Ratio Test    For all n, 0 < an

If lim
an+1

an

= L <1 then an  converges
n=1

∞

∑

If lim
an+1

an

= L >1 or → ∞ then an diverges
n=1

∞

∑
Root Test    For all n, 0 < an

If lim an( )
1

n = L <1 then an converges
n=1

∞

∑

If lim an( )
1

n = L >1 or → ∞ then an diverges
n=1

∞

∑

an is absolutely convergent if
n=1

∞

∑

an  is convergent
n=1

∞

∑

So an is convergent
n=1

∞

∑



Limit - Comparison Test

For all n,  0< an  and 0 < bn

If lim
an

bn

= L > 0, L ∈ ℜ

an

n =1

∞

∑  converges then bn

n =1

∞

∑  converges

If lim
an

bn

= 0

bn
n =1

∞

∑  converges then an
n =1

∞

∑  converges

If lim
an

bn

→ ∞

bn
n =1

∞

∑  diverges then an
n =1

∞

∑  diverges
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Alternating - Series Test

For all n,  an > 0

an{ } is a strictly decreasin g sequence

an → 0

Then −1( )n+1
an  is convergent

n =1

∞

∑

The power series an x n

n= 0

∞

∑ converges at the

real number x1 if an x1

n

n= 0

∞

∑  converges and 

diverges at x1 if an x1
n

n= 0

∞

∑  diverges

For a given power series an xn

n =0

∞

∑ ,  one of 

the following is true :

The power series converges only at x = 0

The power series absolutely converges at all x

There is a number r > 0 such that the power 

series converges absolutely at all x such that 

x < r and diverges at all x such that x > r

If the power series an xn

n =0

∞

∑  is :

convergent only  at x = 0 ,  then the

radius of convergence is 0

Absolutely convergent at all x,  then the

radius of convergence is ∞
Converges absolutely at all x such that 

x < r and diverges at all x such that x > r,

then the radius of convergence is r

The int erval of convergence

of the power series an x n

n= 0

∞

∑  

is the set 

x : an x n

n =0

∞

∑  is convergent at x
 
 
 
  

 
 
 
  

Differentiation and 

Integration of power 

series can be done 

term by term

Abel' s Theorem

Suppose f x( ) = an xn

n= 0

∞

∑
for x < 1

If an
n= 0

∞

∑  converges,  then

lim
x →-1

 f x( ) = an

n= 0

∞

∑

Suppose that r > 0, and 

f x( ) = an
n= 0

∞

∑ xn  for x < r 

Then for all n ≥ 0, an =
f n( ) 0( )

n!

If f x( ) = a0 + a1x + ...+ an xn + ... for x < r

f x( ) = f 0( ) + f ' 0( )x + f n( ) 0( ) x n

n!
+ ...

Taylor's Theorem

Assume that f has continous derivatives

of order n +1 on 0 , x[ ],  then

Rn x( ) = 1
n!

f n +1( ) t( ) x − t( )n
dt

0

x

∫



Percent Change

Change

Original
=

x

100

Repeated Percent Increase

Final Amount = Original ⋅ 1+ rate( )# changes

Repeated Percent Decrease

Final Amount = Original ⋅ 1− rate( )#changes

logb n = x

b x = n

logb xy( ) = logb x( ) + logb y( )

logb

x

y

 

 
  

 

 
  = logb x( ) − logb y( )

logb xn( ) = n logb x( )
ln n = x

loge n = x

ex = n

distance = rate ⋅ time

AverageSpeed =
TotalDistance

TotalTime

x + y( )2 = x 2 + 2xy + y2

x − y( )2 = x2 −2xy + y2

x + y( ) x − y( ) = x2 − y 2

y = ax 2 + bx + c

x = −b ± b2 − 4ac
2a

TriangleInternalAngles =180°
Freds Theorem

2 II lines intersected make only 2 unique angles

3rd triangle side between sum and difference of other two

a2 + b2 = c 2

3 0 - 6 0 - 9 0  T r i a n g l e

1: 3 : 2

4 5 - 4 5 - 9 0  T r i a n g l e

1 : 1 : 2

Triagle Area

A =
1

2
bh

Equilateral Triagle Area

A = s2 3
4

Area of Square

A = s2 or A =
d2

2

Area of Trapezoid

A = b1 + b2

2

 
 
 

 
 
 h

Sum Internal Polygon w/ n Sides

SumAngles = n − 2( )180°
Rect Solid Surface Area

SA = 2lw + 2wh + 2lh

Long Diagonal

a2 + b2 + c2 = d2

Cube     V = s3    SA = 6s2

LongDiagonal = s 3

Cylinder  V = πr2h

SA = 2πr 2 + 2πrh

y = mx + b

y − y1 = m x − x1( )
d = x2 − x1( )2 + y2 − y1( )2

midpt =
x2 + x1

2
,
y2 + y1

2

 
 
 

 
 
 

Parabola   y = a x − h( )2 + k

Circle   r 2 = x − h( )2 + y − k( )2

Ellipse   1=
x − h( )2

a2
+

y − k( )
b2

2

Hyperbola  1=
x − h( )2

a2
−

y − k( )
b2

2

sin = opp

hyp
  cos= adj

hyp
  t an= opp

adj
= sin

cos

csc =
1

sin
  sec =

1

cos
  cot =

1

cos

sin2 x + cos2 x =1

sin
a

= sin
b

= sin
c

c 2 = a2 + b2 − 2abcos

Work Done=rate of work⋅ time

deg rees

360
=

radians

2π

Polar

x = rcos   y = rsin

r2 = x 2 + y 2

tan = x

y

Even : f x( ) = f −x( ), y − axis

Odd : − f x( ) = f −x( ),origin

x-axis symmetry

∃ f x( )  and − f x( )  ∀x

Domain : x −values

Range : y − values

Roots : f x( ) = 0

Standard Deviation = =
x i −( )2∑
N

Find the mean of the set

Find difference between each value and mean

Square differences

Average results

Square root the average

Probability x( ) =
Number of outcomes that are x

Total possible outcomes

Probabilty of Multiple Events

P xn( ) = P x1( )⋅ P x2( ) ⋅ P x3( ) ⋅ P x4( )...
Group Problem

Total = Group1 + Group2 + Neither − Both

Mean : Average of set elements

Median : Middle Value

M o d e : Most Often

Range : Highest-Lowest

Arithmetic Series

an = a1 + n −1( )d
Arithmetic Sum

Sum = n
a1 + an

2

 
  

 
  

Geometric Series

an = a1r
n−1( )

Geometric Sum

Sum =
a1 1− r n( )

1− r

Contrapositive

A → B  ∴   ~ B →~ A

Infinite Geometric

Sum =
a1

1− r
,−1< r <1

i1 = i

i2 = −1

i3 = −i
i4 =1
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