

الاختيار الأول

أجب عن جميع الأسئلة الآتية :

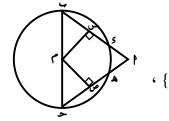
السؤال الأول: أكمل العبارات الآتية:

- (١) أكبر الأوتار طولا في الدائرة هو
- (٢) خط المركزين لدائرتين متقاطعتين يكون على الوتر المشترك و
- (٣) إذا كانت م دائرة طول قطرها ١٠ سم وكانت ٩ نقطة على الدائرة فإن م ٩ =
 - (٤) إذا كان م ، م دائرتان في المستوى طولا نصفي قطريهما ٢ سم ، ٣ سم ،
- (٥) إذا كانت ((، ۲) ، ب (٣ ، ٤) فإن إحداثيا نقطة منتصف (ب هي
- (٦) المستقيم الذي يوازي محور السينات ويمر بالنقطة (٢ ، ٣) معادلته هي

السؤال الثاني : أختر الإجابة الصحيحة من بين الإجابات المعطاة .

- (۱) میل المستقیم الذی معادلته π س = 3 ص = 7 = 8 هو:
- (5) $\frac{3}{4} ()$ $\frac{3}{4} ()$ $\frac{4}{3} ()$
- (٢) طول القطعة المستقيمة الواصلة بين النقطتين (٠٠٠) ، (٥،١٢) تساوى : 17 (s) 17 (>) Y (-) ° (p)
- (٣) إذا كانت م دائرة طول نصف قطرها مه وكان ل مستقيما في نفس مستوى الدائرة

ويبعد عن مركزها
$$\frac{4}{5}$$
 م فإن المستقيم ل يكون :


- (٩) مماسا للدائرة (ب) قاطعاً للدائرة
- (ُحُ) خارج الدائرة (٤) أحد محاور التماثل للدائرة
 - (٤) بوجد لنصف الدائرة:
- رر -- س واحد (ب) محوری تماثل (ح) ثلاثة محاور تماثل (s) أعدد ٧:٠١٠ قواندن
- (٤) أعدد لا نهائي من محاور التماثل
 - (٥) إذا كانت $q \cdot q \cdot q$ نقطتان في مستوى حيث $q \cdot q = 7$ سم ، فإن أصغر دائرة تمر بالنقطتين ٢ ، ب يكون طول نصف قطرها
 - (۹) یساوی ۳ سم (ب) پساوی ۲ سم
 - (حُ) أصغر من ٣ سم (۶) أكبر من ٦ سم

السؤال الثالث :

- (٩) أوجد معادلة الخط المستقيم العمودي على المستقيم ٣ س ٤ 0 + 7 = 0 و يقطع جزءا من محور الصادات مقداره ٦ وحدات .

لسؤال الرابع:

السؤال الخامس: في الشكل المقابل:

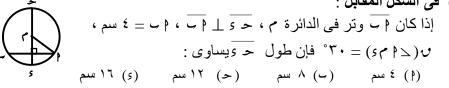
م ب ح مثلث حیث $\frac{1}{2}$ قطر فی الدائرة م ، رسم $\frac{1}{2}$ $\frac{1}$

وخذاررتاني

أجب عن جميع الأسئلة الآتية :

السؤال الأول: أكمل العبارات الآتية:

- (۱) البعد بین النقطتین (۰،۰) ، (۰،۰۲) یساوی
- (٣) المربع المرسوم داخل دائرة تكون أضلاعه على أبعاد من مركز الدائرة .
- م، \boldsymbol{v} دائرتان طولا نصفا قطریهما ۳ سم، ۸ سم، فإذا کان \boldsymbol{v} هم فإن الدائرتين


- (٥) إذا كان المستقيم ل يقطع الدائرة م في النقطتين ٩ ، ب فإن المستقيم ل سطح الدائرة م =

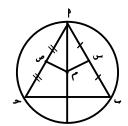
(٦) في الشكل المقابل: دائرة م، س ص مماس للدائرة عند ب، ١٩ س // مح، $^{\circ}$ فإذا كان $_{\circ}($ $_{\circ}$ م $_{\circ}$ فإن $_{\circ}$ فإن $_{\circ}$ فإن $_{\circ}$

السؤال الثاني: أختر الإجابة الصحيحة من بين الإجابات المعطاة:

- $\frac{\Box}{P}$ (5) $\frac{P}{P}$ (\sim) $\frac{\Box}{P}$ (\sim) $\frac{\Box}{P}$ (P)
- (Υ) إذا كان المستقيم Υ س + Υ س + Υ س + Υ س + Υ ص + Υ ابدا كان المستقيم Υ
 - فإن A تساوى : (م) Y (ح) Y (ح) Y
 - (٣) إحداثي النقطة التي تنصف البعد بين النقطتين (١٠،١) ، (١، ٩) هي :
 - $(\xi, \cdot)(\xi)$ (ξ, ζ) (φ) (φ, \cdot) (φ) $(\varphi, \zeta)(\xi)$
- (٤) إذا كان المستقيم ل يمس الدائرة م التي طول قطر ها ١٠ سم ، فإن المستقيم ل يبعد عن مركزها بمقدار:
 - (م) ۳ سم (ب) ۶ سم (ح) ۵ سم (5) ۳ سم (۵) ۳ سم (۵
 - ربع دائرة مركزها م. رسم بداخلها مستطيل م ح > 8 ، وبع دائرة مركزها م. رسم بداخلها مستطيل م > 8 ، فإذا كان م > 8 سم فإن ح ه يساوى :

 (۱) سم (۱) عسم (۱) كسم (۱) سم (

السؤال الثالث :


- (۱) أو جد معادلة المستقيم الذي يمر بالنقطة (۱ ، ٦) ويمر بنقطة منتصف $\frac{1}{4}$ حيث $\{(1,-1), (7,-3),$
 - (۲) ارسم $\frac{1}{9}$ التي طولها ٥ سم ثم ارسم الدائرة التي تمر بالنقطتين $\frac{1}{9}$ ، $\frac{1}{9}$ وطول نصف قطرها ٣ سم . (لا تمح الأقواس)

السؤال الرابع:

- (٩) أثبت أن المثلث الذي رءوسه (1, 3) ، (-1, -1) ، (-7, -7) قائم الزاوية في (-7, -7) قائم الزاوية في (-7, -7)
 - () أثبت أن النقط A (7 ، 7) ، 7 ، 7) ، 7 البست على استقامة و احدة .

السؤال الخامس:

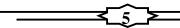
في الشكل المقابل:

۹ ح مثلث مرسوم داخل دائرة م ،

 $\sqrt{2}$ ، س منتصف $\sqrt{2}$ ، $\sqrt{2}$

ی منتصف $\overline{-}$ ، مس = م ص . أثبت أن :

 $\frac{1}{10}$ و الأضلاع $\frac{1}{10}$ و الأضلاع الأضلاع الأضلاع الأضلاع الأضلاع الأضلاع المناس


وبختيار وتأوك

أجب عن جميع الأسئلة الآتية

السؤال الأول: أكمل العبارات الآتية:

- (١) المستقيم المار بمركز الدائرة وبمنتصف أى وتر فيها يكون
- (۲) إذا كانت م دائرة طول قطر ها Λ سم ، η نقطة على الدائرة فإن η
 - (٣) المستقيم العمودي على قطر الدائرة من إحدى نهايته يكون
- م، سہ دائرتان متماستان من الداخل وطولا نصفی قطریهما سیم، سه، فإذا کان من -7 سم ، سه، -7 سم ، فود -7 سم ، ف
- (٥) معادلة المستقيم الذي يمر بالنقطة (- ٢ ، ٧) ويوازي محور الصادات هي
 - (٦) البعد بين النقطة (٣ ، ٤) ونقطة الأصل تساوى

السؤال الثاني: أختر الإجابة الصحيحة من بين الإجابات المعطاة:

(٢) أي مستقيم يمر بمركز الدائرة هو:

(٩) قطر فيها (١) محور تماثل لها (ح) وتر فيها (٥) مماس لها

(٣) لا يمكن رسم دائرة تمر برءوس:

(ح) معين (٥) مثلث (۱) مستطیل (۱) مربع

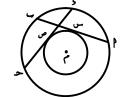
اذا کان طول نصف قطر الدائرة م= طول نصف قطر الدائرة ص = من فإن إذا کان طول نصف قطر الدائرة م الدائرتين تكونان :

(٩) متداخلتان (٦) متماستان من الخارج (ح) متباعدتان (٥) متقاطعتان

(٥) إذا كان \overline{b} \overline{q} \overline{b} \overline{q} \overline{b} \overline{q} \overline{b} \overline{q} \overline{b} \overline{q} \overline{b} \overline{q} \overline{q} يساوى Υ (5) $\frac{1}{2}$ (\Rightarrow) $\frac{1}{2}$ - (\hookrightarrow) Υ - (\uparrow)

(٦) معادلة المستقيم الذي ميله يساوى ١ ويمر بنقطة الأصل هو:

 $- = \omega$ (s) $\omega = \omega$ (-) $\omega = \omega$


السؤال الثالث:

(٩) في الشكل المقابل:

۹ - ح و شبه منحرف فیه ۹ (۹ ، - ۲) ب (٣ ، ٣) ، ح (س ، ـ س) و (٤ ، ـ ٣) ، أوجد إحداثي نقطة ح .

(-) إذا كانت (-) ، - نقطتين في المستوى بحيث كان (-) سم ، فارسم دائرة تمر بالنقطتين ٩ ، ب بحيث يكون طول نصف قطرها ٣ سم . كم عدد الحلول الممكنة

السؤال الرابع: في الشكل المقابل

دائرتان متحدتان المركز في م، $\overline{4}$ ، ح $\overline{6}$ وتران في الدائرة الكبرى يمسان الدائرة الصغرى في س ، ص على الترتيب . فإذا كان حو = 7 سم . أوجد مع البرهان طول $\frac{7}{9}$.

السؤال الخامس:

- (A) أثبت أن المثلث الذي رؤوسه النقط ص (٤ ، ٢) ، س (٣ ، ٥) ع (- ٥ ، - ١) قائم الزاوية في ص ، ثم أحسب مساحة سطحه .
- (ب) إذا كانت نقطة ح ($^{\circ}$ ، $^{\circ}$ منتصف $^{\circ}$ حيث ب ($^{\circ}$ ، $^{\circ}$) . أوجد إحداثي نقطة م

الاختبار الرابع

أجب عن جميع الأسئلة الآتية :

السؤال الأول: أكمل العبارات الآتية

- (١) الأوتار المتساوية في الطول في الدائرة تكون
- (٢) المستقيم المار بمركز الدائرة ومنتصف أى وتر فيها يكون
- (٣) المستقيم العمودي على قطر الدائرة من إحدى نهايتيه يكون
 - (٤) أى ثلاث نقط لا تنتمى لمستقيم واحد يمر بها
- (٥) إذا كانت ((- ۲، ۸) ، ب (٥، ٦) فإن إحداثي نقطة منتصف (٦ هي
- ميل المستقيم العمودي على المستقيم: $\pi 9 = 0$ يساوي

السؤال الثاني: اختر الإجابة الصحيحة من بين الإجابات المعطاة

- (۱) إذا كان المستقيم θ مماسا لدائرة طول قطرها θ سم فإنه يبعد عن مركزها مسافة : (۱) إذا كان المستقيم θ سم (۱) θ سم (۲) سم (۲) سم
- (۲) **فی الشکل المقابل**: عدد محاور التماثل تساوی: (7) **فی الشکل المقابل**: عدد محاور التماثل تساوی: (7) (عدد لا نهائی (۲)
 - (۳) إذا كان سطح الدائرة م \bigcap سطح الدائرة ن \emptyset فإن الدائرتين تكونان : (۹) متماستان من الداخل (۹) متماستان من الخارج (ح) متقاطعتان (۶) متباعدتان
- (٤) دائرة مركز ها نقطة الأصل ونصف قطر ها ٣ وحدات فأى من النقط الآتية تنتمى للدائرة : $(7 \ V)(5) \ (7 \ V)(5) \ (7 \ V)(5) \ (1 \ V)(5) \ (2 \ V)(5) \ (3 \ V)(5) \ (4 \ V)(5) \ (4 \ V)(5) \ (5 \ V)(5) \ (5 \ V)(5) \ (5 \ V)(5) \ (6 \ V)(5) \ (7 \ V)($
 - (°) ميل المستقيم الموازى لمحور السينات يساوى : (۱) ۱ (۳) صفر (ح) ۱ (۶) غير معرف
 - (7) **فی الشکل المقابل**:

 إذا کان 9 20 قطر فی الدائرة 9 20 0 20مماسان لها عند 9 20 0 20 0 20فإن 0 20 20 تساوی : 0 20 20 0 -

السؤال الثالث:

- (٩) أوجد معادلة المستقيم العمودى على المستقيم ٢س ٣ ص ٤ = ويقطع من محور الصادات جزءا سالبا مقداره \circ وحدات .
- () ارسم $\frac{4}{4}$ التى طولها ٦ سم ، ثم ارسم دائرة تمر بالنقطتين $\frac{1}{4}$ ، بحيث يكون طول نصف قطر ها ٥ سم . ما عدد الحلول الممكنة ؟

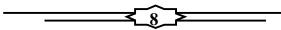
السؤال الرابع:

دائرة مركزهام ، $\frac{1}{9}$ ، $\frac{1}{9}$ ، و منتصف $\frac{1}{9}$ ، ه منتصف $\frac{1}{9}$ ، ه رسم $\frac{1}{9}$ ، ه منتصف $\frac{1}{9}$ ، و رسم $\frac{1}{9}$ ، $\frac{1}{9}$ ،

<u>أولا</u>: ١ - - اح <u>ثانيا</u>: ١ - - ١ - ص

السؤال الخامس:

 $^{\circ}$ اثبت أن $_{\circ}$ (\leq $^{\circ}$ \sim $^{\circ}$


ثالثًا: أوجد معادلة الخط المستقيم المار بالنقطتين ١ ، ح .

الاختيار الخامس

أجب عن جميع الأسئلة الآتية:

السؤال الأول: أكمل العبارات الآتية

- (١) الأوتار المتساوية في الطول في الدائرة تكون
- (٢) خط المركزين لدائرتين متقاطعتين يكون
- (٣) إذا كانت النقطة ح تقع خارج الدائرة م التي طول نصف قطرها من فإن حم
- (٥) معادلة المستقيم الذي يمر بالنقطة (٣ ، ٢) ويوازي محور السينات هو
- (٦) البعد بين النقطة (٤،٣) ونقطة الأصل في نظام إحداثي متعامد تساوى

السؤال الثاني: اختر الإجابة الصحيحة من ين الإجابات المعطاة

- (۱) إحداثي نقطة منتصف $\overline{--}$ حيث $\overline{--}$ حيث $\overline{--}$ (۲، ۳) ، ح $\overline{--}$ (۸) إحداثي نقطة منتصف (۲، ۲) (۲، ۲) (۲، ۲) (۲، ۲) (۲، ۲)
- (۲) إذا كان البعد بين النقطتين (۲ ، ۰) ، (۰ ، ۱) هو وحدة الطول فأن (ع = (۲) عفر (ح) ۱ (۶) في النقطتين (۲) صفر (ح) ۱ (۶)
 - (۳) إذا كان $\Box_1 \perp \Box_2 = \frac{3-4}{4}$ فإن ميل $\Box_2 = 1$ فإن ميل $\Box_3 = 1$
 - $\frac{4}{3}$ (s) $\frac{3}{4}$ (\Rightarrow) $\frac{3-}{4}$ (\hookrightarrow) $\frac{4-}{3}$ (\uparrow)
- (٤) إذا كانت م ، ω دائرتان طولا نصفى قطريهما ٢ سم ، ٣ سم ، ω = ٦ سم ، فإن الدائرتان تكونان :
 - (٩) متداخلتان (٦) متقاطعتان (ح) متماستان من الخارج (٤) متباعدتان
- (°) $\Delta = -\frac{1}{4}$ له محور تماثل واحد وأطوال أضلاعه ۱۰ سم ، ص فإن ص تساوى (°) $\Delta = -\frac{1}{4}$ (°) (°) (°) (°) (°)

السؤال الثالث:

- (۹) ارسم $\frac{1}{1}$ طولها ۸ سم وارسم دائرة تمر بالنقطتين $\frac{1}{1}$ ، به وطول نصف قطرها $\frac{1}{1}$ سم
- (ب) أثبت أن النقط A (۲ ، ٥) ، ب (۳ ، ۳) ، ح (٤ ، ۲) ليست على استقامة واحدة ، وإذا كانت و (٩ ، ٤) فأثبت أن الشكل ٩ بحو متوازى أضلاع .

السؤال الرابع:

إذا كانت معادلتى المستقيمين $\{ c_1 : c_2 : c_3 : c_4 : A = 0 \}$ الترتيب $\{ c_4 : c$

- (i) قیمة ب التی تجعل در، در متوازیان
- (ii) قیمة ب التی تجعل ور، وج متعامدان
- (iii) إذا كانت النقطة (١ ، ٣) تمر بالمستقيم ϵ_1 فأوجد قيمة A .

السؤال الخامس: في الشكل المقابل

 $\frac{1}{9} - 3 - 3 = 6$ وتران متساویان فی الدائرة م، والنقطتین $\frac{1}{9} - 3 - 3 = 3$ س، ص منتصفا $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ه، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ه، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ه، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ه، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ه، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ه، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ه، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ه، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ه، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ه، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ه، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ها ، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ها ، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ها ، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ها ، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ها ، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ها ، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ها ، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ها ، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ها ، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ها ، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ها ، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ها ، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ها ، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ها ، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ها ، و ، $\frac{1}{9} - 3 - 3 = 3$ الدائرة فی ما دائر الدائرة فی ما دائر الدائرة فی دائرة فی د

الاختيار السادس

أجب عن جميع الأسئلة الآتية :

السؤال الأول: أكمل العبارات الآتية

(١) المماس للدائرة عمودي على

(۲) فى الشكل المقابل:
 دائرة م، ٩ ب ح م مستطيل ، ٩ م = ٤ سم،
 نصف قطر الدائرة يساوى ٥ سم، فإن ٩ ح =

(٣) البعد بين النقطتين (٦،٠٠) ، (-٤،٠) يساوى

(٤) إذا كان طول نصف قطر الدائرة $\eta = 0$ سم ، طول نصف قطر للدائرة $\omega = 0$ سم وكان $\eta \omega = 0$ سم فإن الدائرتين η ، ω تكونان

A فإن $(^{\circ})$ النقطة $(^{\bullet}, ^{\bullet})$ تنتمى للمستقيم $(^{\circ}, ^{\bullet})$ مناوى

..... $\frac{1}{2}$ $\frac{1}{2}$

السؤال الثاني: اختر الإجابة الصحية من بين الإجابات المعطاة

(٢) دائرة م طول قطر ها ٦ سم ، فإذا كان المستقيم ل مماس لهذه الدائرة فإنه يبعد عن مركز ها م مسافة :

عن مرکزها م مسافة: (۱) ۳ سم (۱) ۲ سم (ح) ۵ سم (۶) ۲ سم

(۳) إذا كان مجموع قياس زاويتين في مثلث تساوى $\frac{2}{3}$ مجموع قياسات زواياه ، فإن

قياس الزاوية الثالثة بالدرجات تساوى : (م) ٣٠° (ب) ٤٥°

°9·(s) °7·(>) °٤٥(-) °٣·()

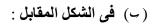
(٤) المماسان المرسومان من نهايتي قطر في الدائرة يكونان:

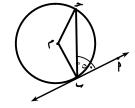
(۹) متعامدین (۱) متوازیین (۱) متقاطعین

(٥) إذا كانت ١ (٧ ، ٣) ، ب (١ ، ٥) فإن نقطة منتصف ١ ب هي :

 $(7,7)(5) \qquad (\circ,7)(\Rightarrow) \qquad (7,\circ)(\varphi) \qquad (\circ,7)(\beta)$

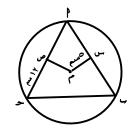
 $\frac{3}{2}$ (5)


 $\frac{2}{3}$ (\Rightarrow) $\frac{2}{3}$ - (\forall) $\frac{3}{2}$ - (\dagger)


السؤال الثالث:

- (٩) أثبت أن النقط ٩ (٥، ٣) ، ب (٣، ٢) ، ح (١، ١) تقع على استقامة واحدة .
 - (ب) إذا كانت ، ح نقطتين في المستوى بحيث ح = 7 سم ، فار سم دائرة تمر بنقطتين ب، ح يكون طول نصف قطرها ٥ سم. كم عدد الحلول الممكنة؟

السؤال الرابع:


(٩) أوجد معادلة الخط المستقيم الذي يمر بالنقطة (٢، ٣) ويوازي المستقيم، ۲ س + ص - ۷ = ۰

مماس للدائرة م عند ب، $\overline{-}$ وتر في الدائرة ، فإذا كان $arphi(ar{ extstyle })$ الدائرة ، فإذا كان $arphi(ar{ extstyle })$. أوجد: ق(∠بمح)

السؤال الخامس: في الشكل المقابل

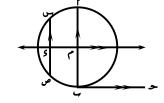
م سح مثلث مرسوم داخل دائرة م فيه $q = q - \epsilon$ ، رسم يقطعه في ص ، فإذا كان مس = ٥ سم ، ص ح = ١٢ سم . أوجد طول نصف قطر الدائرة ، ثم اوجد مساحة سطح (4 = 1.7)الدائرة م.

الاختيار السايح

أجب عن جميع الأسئلة الآتية :

السؤال الأول: أكمل العبارات الآتية

- (۱) أي ثلاث نقط لا تنتمي لمستقيم واحد تمر بها
- (٢) المستقيم المار بمركز الدائرة عموديا على أي وتر فيها
- (") إذا كانت الدائرة $\neg \cap$ الدائرة $\neg \cap \{ \}$ الله الدائرتين (")
- (٤) إذا كان بُعد المستقيم ل عن مركز الدائرة < طول نصف قطرها فإن المستقيم ل يكون

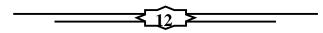

- (٥) إذا كان المستقيمان : K س Y ص + W = V ، V س + W ص V ص متوازيان فإن V تساوى
- (٦) ميل الخط المستقيم العمودي على المستقيم المار بالنقطتين (٢، ٦)، (-٤، ١) بساوي

السؤال الثاني: اختر الإجابة الصحية من بين الإجابات المعطاة

- (١) خط المركزين لدائرتين متقاطعتين الوتر المشترك
- (۹) بنصف (۷) عمودی علی (ح) بنصف و عمودی علی (۶) یوازی
- (۲) إذا كان سطح الدائرة $\gamma \cap \omega$ سطح الدائرة $\omega = \{ \emptyset \}$ فإن الدائرتين $\gamma \cap \omega$ تكونان : (۲) متقاطعتان (۰) متماستان من الخارج (ح) متماستان من الداخل (۶) متباعدتان
- م، $\boldsymbol{\omega}$ دائرتان متماستان من الداخل طولی نصفی قطریهما ۷ سم ، ۶ سم فإن $\boldsymbol{\omega}$ (۳) من دائرتان متماستان من الداخل طولی نصفی قطریهما ۱۱ سم (۶) سم (۲) سم (۲)
- (٥) النقط (٣ ، ٠) ، (٣ ، ٠) تمثل : (٩) مثلث مختلف الأضلاع (-) مثلث متساوى الأضلاع (-) مثلث متساوى الساقين (-) مثلث متساوى الساقين (-)
 - (7) معادلة المستقيم الذي يمر بالنقطة (Υ , - Υ) ويوازى محور السينات هو (Υ) $\omega = -\Upsilon$ (σ) $\omega = -\Upsilon$

السؤال الثالث:

(٩) في الشكل المقابل:



(ب) في الشكل المقابل : دائرتان متحدتا المركز م ، آ

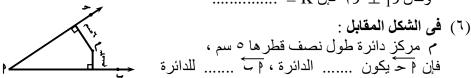
دائرتان متحدتا المركز م، \overline{q} ، \overline{q} وتران في الكبرى يمسان الصغرى في و، ه على الترتيب . أثبت أن q q q

السؤال الرابع:

(4) أوجد معادلة الخط المستقيم الذي يمر بالنقطة ($^{\text{T}}$) و عمو دي على المستقيم $^{\text{O}}$ الحب $^{\text{O}}$ - $^{\text{$

(ب) ارسم المثلث q - c الذي فيه q - c = 0 سم ، c - c = 0 سم ، c - c = 0 سم ، ثم ارسم دائرة تمر بالنقط c - c = 0 به ، c - c = 0 أوجد طول نصف قطر ها (لا تمو الأقواس)

السؤال الخامس:


- (۹) إذا كان (۱: ۲ س + ص 2 = ۰ ، (۲: 3 س + 3 ص + ۰ = ۰ أوجد 4 التي تجعل :
 - (i) $\epsilon_l \perp \epsilon_r$ (ii) $\epsilon_l \parallel \epsilon_r$
- () أثبت أن النقطة (٢ ، ٣) تقع على المستقيم المار بالنقطتين (١ ، ١) ، (٠ ، ١) .

الاختبار النامن

أجب عن جميع الأسئلة الآتية :

السؤال الأول: أكمل العبارات الآتية

- (١) محور تماثل الدائرتان م ، به المتقاطعتان في ١ ، ب هو
- (۲) تكون الدائرتان م ، م متماستان من الخارج في 4 إذا كان γ ω =
 - A = اذا کانت A (Y - Y) ، A = افإن A = -
- (٤) إذا كانت نقطة ح منتصف أب حيث (٣ ، ١) ، ب (١ ، ٧) فإن إحداثي نقطة ح هو (.... ،) .
- (\circ) إذا كان (\circ) با (\circ) س (\circ) س (\circ) س (\circ) با (\circ) با (\circ) س (\circ) س (\circ) س (\circ) با (\circ) با (

السؤال الثانى: اختر الإجابة الصحية من بين الإجابات المعطاة

(۱) طول نصف قطر أصغر دائرة يمكن رسمها لتمر بالنقطتين β ، ν حيث β $\nu=0$ سم يساوى : (ع) β سم (ح) β سم (ح) β سم (ع) β سم

(۲) إذا كانت م دائرة طول قطرها ۱۰ سم ، q نقطة في مستواها حيث q = 0 سم فإن q تقع :

(٩) خارج الدائرة (٦) داخل الدائرة (ح) على الدائرة (٤) على مركز الدائرة

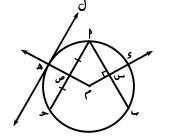
(٣) عدد الدوائر التي تمر برءوس أي مثلث:

(٩) واحدة (٦) أثنان (ح) ثلاث دوائر (٥) عدد لا نهائي

(٤) إذا كانت م ، \boldsymbol{v} دائرتان متماستان حيث م \boldsymbol{v} = ٦ سم ، نصف قطر الدائرة الكبرى = ٠١ سم ، فإن نصف قطر الدائرة الصغرى يساوى :

(۹) ٤ سم (ح) ٨ سم (۶) ٩ سم

(٥) إذا كانت م دائرة طول نصف قطرها ٤ سم تمس دائرة صغرى مركزها \mathbf{v} حيث $\mathbf{v} = \mathbf{v}$ سم فإن : محیط الدائرة \mathbf{v} : محیط الدائرة \mathbf{v} یساوی : $\mathbf{v} = \mathbf{v}$ (٤) $\mathbf{v} = \mathbf{v}$ (٤) $\mathbf{v} = \mathbf{v}$ (٤) $\mathbf{v} = \mathbf{v}$


(٦) ميل المستقيم الذي معادلته ٢ س + ٥ ص = 3 هي :

 $\frac{5}{2}$ (4) $\frac{2}{5}$ (7) $\frac{2}{5}$ - (7) $\frac{5}{2}$ - (1)

السؤال الثالث :

- (٩) أوجد معادلة الخط المستقيم المار بالنقطة (٢ ، ٥) و عمودى على المستقيم الذي يمر بالنقطتين (٢ ، ٥) ، (١ ، ٣) .
- (ب) باستخدام الأدوات الهندسية ارسم $\frac{1}{9}$ التي طولها ٥ سم، ثم ارسم دائرة تمر بالنقطتين $\frac{1}{9}$ ، $\frac{1}{9}$ بحيث يكون طول نصف قطر ها ٤ سم . (لا تمحو الأقواس)

السؤال الرابع: في الشكل المقابل

أولا: أثبت أن سء = صه

 $\overline{1}$ اندیا : إذا رسم المستقیم $\overline{1}$ یمس الدائرة فی ه . اثبت أن المستقیم $\overline{1}$

السؤال الخامس:

مثل بیانیا فی مستوی إحداثی متعامد النقط $\{(7,7), -(-1,-1), -(7,-2),$ و $\{(7,7), (7,7), (7,-2), (7,7), (7$

الاختبار التاسع

أجب عن جميع الأسئلة الآتية

السؤال الأول: أكمل العبارات الآتية

- (۱) خط المركزين لدائرتين متقاطعتين يكون عموديا على الوتر المشترك و
- (۲) إذا كان سطح الدائرة م \cap سطح الدائرة $\omega = \emptyset$ ، فإن الدائرتين م ، ω
- (٣) ميل المستقيم الموازى للمستقيم المار بالنقطتين (٣، ١)، (٥، ١) يساوى

(٥) في الشكل المقابل: دائرة مركزها م ، و منتصف $\frac{1}{4}$ ، $v(\angle 2 \land v) = \cdot 3$ °

فإن ن (۱۵ م م) =°

(٦) في الشكل المقابل: إذا كانت مساحة سطح \triangle ٩ \land \rightarrow القائم الزاوية في \land = \land سم في طول قطر الدائرة \rightarrow = \land سم

السؤال الثاني: اختر الإجابة الصحية من بين الإجابات المعطاة

- (۱) إذا كانت الدائرتان γ ، ω متماستان من الخارج وكان طولا نصفى قطريهما σ سم ، σ سم فإن طول σ يساوى :
- (۹) ۲ سم (۵) ۲.۵ سم (۵) ۴ سم (۶) ۸ سم
- (۲) إذا كانت q تنتمى للدائرة q التى طول قطر ها ۱۰ سم فإن طول q يساوى : q يساوى : q بسم (ح) q سم (ح) q سم (ح) q سم (ع) ۲۰ سم
 - (۳) وتر طوله ۸ سم فی دائرة طول نصف قطرها ٥ سم فإنه یبعد عن مرکزها : (۲) سم (۵) ۲ سم (۵) ۲ سم (۵) ۳ سم (۵) ۲ سم (۵) $^{\circ}$ سم (۵) $^{\circ}$ سم (۵) $^{\circ}$
 - - البعد العمودي بين المستقيمين $\omega = \tau = \cdot \cdot \omega + \tau = \cdot \cdot \omega$ (٥) البعد العمودي بين المستقيمين $\omega = \tau = \cdot \cdot \omega + \tau = \cdot \cdot \omega$ (١) (١)
- م، م، مه دائرتان طولا نصفی قطریهما ۳ سم، ۶ سم، م مه $= \Lambda$ سم فإن الدائرتین (٦) متداخلتان (۵) متداخ

السؤال الثالث:

- (A, A, A, -1) ، (A, A, -1)و (٥،٥) هي رؤوس متوازي أضلاع.
- (ب) باستخدام الأدوات الهندسية ارسم $\frac{1}{2}$ حيث $\frac{1}{2}$ سم ، ثم ارسم دائرة طول نصف قطرها ٣ سم تمر بالنقطتين ٩ ، ب (لا تمح الأقواس)

السؤال الرابع:

٩ - قطر في دائرة مركزها م فإذا كان ب (١١،٨) ، م (٥،٧)

أو لا: إحداثي نقطة ٩.

ثانيا: طول نصف قطر الدائرة

ثالثا: معادلة المماس للدائرة عند نقطة ب

السؤال الخامس:

دائرتان متحدتا المركز م ، $q \in \text{Helit}$ الكبرى ، رسم $q = \overline{q}$ ، مسان الدائرة الصغرى في ٤، ه ويقطعان الدائرة الكبرى في ٧، ح اثبت أن: ثانیا: و ه // ب ح أو لا : ١ ب = ١ حـ

الاختيار إلعاشر

أجب عن جميع الأسئلة الآتية :

السؤال الأول: اختر الإجابة الصحية من بين الإجابات المعطاة

(١) عدد الدوائر التي تمر بنقطتين معلومتين:

 (٩) واحدة (ب) أثنان (ح) ثلاثة (٤) عدد لا نهائي

(۲) مركز الدائرة الخارجة للمثلث هو نقطة تقاطع:
(۲) مركز الدائرة الخارجة للمثلث هو نقطة تقاطع:
(۹) متوسطاته (ب) ارتفاعاته (ح) محاور أضلاعه (۶) منصفات زواياه

(٣) إذا كان المستقيمان اللذين ميلاهما $\frac{2}{2}$ ، $\frac{2}{2}$ متعامدان فإن ك تساوى :

$$rac{1}{3} (s) \frac{1}{3} (s) \frac{3-4}{4} (s) \frac{4-7}{3} (r)$$

(٤) إذا كان $\frac{1}{1}$ قطر في دائرة حيث $\frac{1}{1}$ ($\frac{1}{1}$ ، $\frac{1}{1}$ ، $\frac{1}{1}$ فإن إحداثي مركز الدائرة : $(\xi - \Lambda)(\varsigma)$ $(7, \Upsilon)(\varsigma)$ $(7, \xi -)(\varsigma)$ $(\Upsilon - \Lambda)(\xi)(\xi)$

(٥) في الشكل المقابل:

إذا كان ح منتصف \overline{q} ، \overline{q} ، \overline{q} سم ، q سم q سم

فإن م ح تساوي :

(۹) ۲ سم (۵) ۳ سم (ح) ۳.۲ سم (۶) کا سم

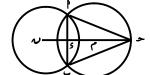
(٦) في الشكل المقابل :

إذا كان : م س لـ ١ ب ، م ص لـ ١ ح ،

ى (∠]) تساوى:

°Y• (5) °7. (>) °0. (4) °2. (1)

السؤال الثاني : أكمل ما يأتي


- (۱) إذا كان م ، م ، م ميلي مستقيمين متعامدين فإن م ، \times م \times ص الله على المادين فإن م ، م \times
 - (٢) مركز الدائرة الخارجة للمربع هي نقطة تقاطع
 - (3) مربع البعد بين النقطتين (٢، ٣)، (١، ١) يساوى
 - (4) المستقيم $\omega = \Upsilon$ يوازي محور
- م ، ω دائرتان طو ω نصفی قطریهما ω سم ، ω سم ، فإذا کان ω فإن الدائرتان تكونان
- (6) م ، م دائرتان متماستان من الداخل طولا نصفى قطريهما ٣ سم ، ٥ سم ، فإن

السؤال الثالث

- $^{\prime}$ اذا کان $_{1}$: ۳ س س $_{2}$ = $^{\prime}$ ، $_{3}$ س ۲ س ۲ $_{4}$ اوجد قیمهٔ K إذا كان : (i) (i) (i) و (i) و (i)
- (ب) ۱ حومتوازی أضلاع فیه ۱ (س، ۲) ، به (۸،۳) ، ح (۱۰،۹) ، و (۷،۷)، أوجد س.

السؤال الرابع

- (۲،۱) أثبت أن المثلث الذي رؤوسه النقط (۱،۱)، (۲،۲)، (۲،۲) متساوى الساقين.
 - () في الشكل المقابل:

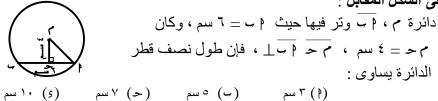
الدائرة م \cap الدائرة $\boldsymbol{\omega} = \{ \boldsymbol{\Lambda} : \boldsymbol{\mu} \}$ 5 → الدائرة م = { ح } . أثبت أن : ح ﴿ = ح بُ

السؤال الخامس

- (4) مماس للدائرة م، ه منتصف $\overline{-}$ ، $\upsilon(\angle |) = \circ \circ \cdot$. أوجد $\upsilon(\angle | \circ)$.
- (ب) باستخدام الأدوات الهندسية ارسم س ص ، ص ع حيث التي تمر بالنقط س ، ص ، ع . أوجد بالقياس طول نصف قطر الدائرة .

الاختيار الحادى عشر

أجب عن جميع الأسئلة الآتية:


السؤال الأول: اختر الإجابة الصحية من بين الإجابات المعطاة


- (١) إذا كانت م دائرة طول نصف قطرها ٥ سم ، فإن النقطة ٩ تقع داخل الدائرة إذا كان م م يساوى:
- ۱۰ (۲) سم (ح) ۰ سم (ح) ۱۰ سم (۶) ۲ سم (٢) دائرة طول نصف قطرها ٤ سم فإذا كان المستقيم ل مماس لهذه الدائرة فإنه يبعد عن مركز ها بمقدار:
- عن مرحره بمعدار .

 (۱) ۲ سم (۱) ۶ سم (۱) ۲ سم (۱) ۸ سم

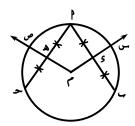
 (۳) ميل المستقيم الموازى لمحور السينات يساوى :

 (۱) ۱۰ (۱) صفر (۱) ۱۰ (۱) غير معرف
 - (٤) البعد بين النقطة (س ، ، ص) ونقطة الأصل تساوى :
- $\frac{7}{1} \frac{7}{1} \frac{7}$ (٥) إذا كان $\overline{0}$ $\overline{0}$
- $\frac{3}{2}$ (5) $\frac{2}{3}$ (\$\sigma\) $\frac{2}{3}$ (\$\cdot\)
 - (٦) في الشكل المقابل:

السؤال الثاني: أكمل العبارات الآتية

- (١) الأوتار المتساوية في الطول في دائرة تكون
- ر۳) م، \boldsymbol{v} دائرتان متماستان من الداخل طول نصفی قطریهما ۷ سم، ٤ سم فإن طول خط المرکزین م \boldsymbol{v} =
 - (٤) بعد النقطة (١٢، ٥) عن نقطة الأصل تساوى
 - (٥) إذا كان المستقيمان : ٢ س + ٣ ص ٤ = ٠ ، K س ٤ ص + ١١ = ٠ متعامدان فإن K تساوى
 - (٦) إذا كان المستقيم : ٢ س ٣ ص + ح = يمر بالنقطة ($^{\circ}$ ، ٢) فإن ح تساوى

السؤال الثالث:


أولا : طول سح تانيا : معادلة سح

ثالثا: إحداثي نقطة تقاطع القطرين

السؤال الرابع:

- (٩) أثبت أن النقط ١(١،٥)، ب (- ٢، ١)، ح (٢، ٧) تقع على استقامة واحدة .
 - (-) ارسم $\frac{1}{4}$ قطعة مستقيمة طولها ٤ سم ، ارسم الدائرة التي تمر بالنقطتين $\frac{1}{4}$ ، وطول نصف قطر ها $\frac{1}{4}$ سم . كم دائرة يمكن رسمها $\frac{1}{4}$ (لا تمح الأقواس) .

السؤال الخامس:

 $\frac{1}{4}$ وتران متساویان فی الطول فی الدائرة م . و ، ه منتصفا $\frac{1}{4}$ ، $\frac{1}{4}$. رسم م و فقطع الدائرة فی ص . أثبت أن : $\frac{1}{4}$. $\frac{1}{4}$

الاختبار الثاني عشر

أجب عن جميع الأسئلة الآتية

السؤال الأول: أكمل ما يأتي

- (١) الأوتار المتساوية الطول في دائرة تكون
 - (٢) محور التماثل للدائرة هو المستقيم
- (7) إذا كان (7) قطر في الدائرة التي مركزها م فإن (7)
- المستقيم العمودي على المستقيم : Υ ص = Υ س + ا يساوي
 - (٥) المستقیم الذی معادلته m = 7 یوازی محور ومیله
 - (٦) بعد النقطة (٦، ٨) عن نقطة الأصل يساوى

السؤال الثاني : اختر الإجابة الصحية من بين الإجابات المعطاة

- (۱) مركز الدائرة المارة برءوس المثلث هو نقطة تقاطع: (۱) متوسطاته (۱) ارتفاعاته (ح) منصفات زوایاه الداخلة (۶) محاور تماثل أضلاعه
- (۱) ا سم (۱) ۰ ٤ سم (ح) ۹ سم (۱۰ (۶)
- (۳) وتر طوله ۸ سم فی دائرة طول قطرها ۱۰ سم فإنه یبعد عن مرکزها بمقدار: (7) سم (7) سم (7) سم (8) سم (8) سم (8)
- (٤) إذا كان $\frac{7}{7}$ قطر في دائرة مركزها $\frac{7}{7}$ حيث $\frac{7}{7}$ (- $\frac{7}{7}$) ، $\frac{7}{7}$ قطر في دائرة مركزها $\frac{7}{7}$ (- $\frac{7}{7}$ (-) (-) (-) (-) (-) (-)
 - (٥) الخط المستقيم المار بالنقطتين (٢، ٣) ، (-٢، ٣): (٩) ميله موجب ((-) ميله سالب ((-) يوازى محور السينات (٤) يوازى محور الصادات
- (7) معادلة المستقيم المار بالنقطتين (* , *) ، (* , *) هو : (4) *

السؤال الثالث:

- - (ب) إذا كانت النقط (٠،١)، (٩،٣)، (٢،٥) تقع على استقامة واحدة فأوجد ٩.

السؤال الرابع:

- (۹) دائرتان متحدتان المرکز م. س نقطة تقع علی الدائرة الکبری ، رسم منها الوتران $\frac{1}{2}$ ، $\frac{1}{2}$ ، $\frac{1}{2}$ ، $\frac{1}{2}$ و یمسان الصغری فی ۹ ، ب علی الترتیب بحیث کان $o(\angle 3 0) = 0.3^{\circ}$. أوجد بالبرهان :
 - $(d\xi z) \circ (1) \qquad (r z) \circ (1)$

السؤال الخامس:

(٩) مثل بیانیا النقط ٩ (١،٠)، ب (- ١،٤)، ح (٧،٨)، و (٩،٤) ثم أثبت أن الشكل ٩ ب ح و مستطیل وأوجد مساحة سطحه .

الاختمار القابلة عشي

أجب عن جميع الأسئلة الآتية :

السؤال الأول : أكمل ما يأتي

- (١) م دائرة طول قطرها ١٤ سم ، المستقيم ل مماس لها في نقطة ٩ ، فإن م ٩ = سم
 - (٢) عدد المثلثات في الشكل المقابل تساوى = مثلث
- (7) في الشكل المقابل: -7 مماس للدائرة م عند 7 ، (29-7)=0° فإن 0(29-7)=0....
- (٤) نصف قطر الدائرة التي مركزها (٧،٤) وتمر بالنقطة (٣،١) يساوى
- ميل المستقيم العمو دي على المستقيم الذي معادلته ٢ س 7 $\dot{0}$ 7 $\dot{0}$ بساوي
 - (٦) الخط المستقيم $\omega = 7 \omega + \pi$ ميله يساوى ويقطع من محور الصادات جزءاً طوله

السؤال الثاني : اختر الإجابة الصحية من بين الإجابات المعطاة

- (١) عدد محاور التماثل في الدائرة يساوى :
- (۹) ۲ (ح) ۳ عدد لا نهائی
- (۲) في الشكل المقابل: حجم الصندوق الناتج من طي الشكل يساوى: (م) ۱۰ سم (ب) ۲۰ سم (ح) ۳۰ سم (غ) ٤٠ سم (ع) ٤٠ سم (غ) ٤٠ سم (ع) ٤٠ سم (غ) ٤

(۳) دائرتان م، م طولا نصفی قطریهما ۱۲ سم، ه سم، فإذا کان م م = ۷ سم فإن الدائر تين تكونان:

(A) متماستان من الخارج (ب) متماستان من الداخل

(ح) متباعدتان (۶) متقاطعتان

(٤) أي ثلاث نقط لا تنتمي لمستقيم واحد يمر بها:

(A) دائرة واحدة (ب) دائرتان (ح) ثلاث دوائر (s) عدد لا نهائي من الدوائر

(٥) ميل أي خط مستقيم يوازي محور السينات يساوي :

(ح) صفر (5) غير معرف (۹) عدد موجب (۷) عدد سالب

(٦) النقط (٠،٠)، (٠،٠)، (١،٠):

(۱) تكون مثلث منفرج الزاوية (ب) تكون مثلث حاد الزوايا (ح) تقع على استقامة واحدة (ح) تقع على استقامة واحدة

(ح) تكون مثلث قائم الزاوية

السؤال الثالث:

- (A) أوجد معادلة المستقيم ل الذي يقطع من محور الصادات جزءا موجبا طوله ٣ ويوازي المستقيم المار بالنقطتين (١٠١٠) ، (٢،٣).
 - (ب) في الشكل المقابل:

A ب ح مثلث مرسوم داخل دائرة مركزها م بحيث كان $\overline{U} = \overline{U}$, $\overline{U} = \overline{U}$, $\overline{U} = \overline{U}$ على الترتيب ، $\sim 2 = \sim 4$. أو جد بالبر هان $\mathcal{O}(\leq \sim)$

- (A) أثبت أن النقط (٣ ، ١) ، ب (٤ ، ١) ، ح (٢ ، ٢) تمر بها دائرة مركزها النقطة م (- ١ ، ٢) ، ثم أوجد محيط الدائرة .
- (ب) باستخدام الأدوات الهندسية ارسم Δ م ب ح الذي فيه Δ سم ، ب ح Δ سم A = V سم ، ثم ارسم دائرة تمر بالنقط A = V ، A = V

السؤال الخامس:

- (A) A ح و متوازى أضلاع ، م نقطة تقاطع قطريه ، فإذا A (V ، ك) ، ب (۸ ، ۳) ، م (٤ ، ٣) ، أوجد إحداثي ح ، و .
- (ب) دائرتان متحدتان المركز م ، $\frac{1}{9}$ وتر في الدائرة يمس الدائرة الصغرى في ح فإذا كان A - = A سم ، طول نصف قطر الدائر ة الكبرى = 0 سم . أو جد بالبر هان طول نصف قطر الدائرة الصغرى.

الاختيار الرابع عشر

أجب عن جميع الأسئلة الآتية :

السؤال الأول: أكمل ما يأتي

- (١) الخط المستقيم المار بمركز الدائرة وبمنتصف أي وتر فيها يكون
- $\overline{(7)}$ إذا كانت $A(-7, \Lambda)$ ، $\varphi(0, -7)$ فإن إحداثي نقطة منتصف $\overline{(7, -7)}$ هي
 - (٤) إذا كان ((-7, 7))، و هي نقطة الأصل فإن (0, 7)
 - المستقيم $\omega + \delta$ $\omega \gamma \gamma = 0$ يمر بالنقطة (γ ،) وميله يساوى
 - (٦) في الشكل المقابل:

دائرة مرسومة خارج مربع مساحته ١٦ سم ، فإن طول قطر هذه الدائرة يساوى سم

السؤال الثاني: اختر الإجابة الصحية من بين الإجابات العطاة

- وتر فی دائرة م طوله ٦ سم و علی بعد ٤ سم من مرکز ها ، فإذا کانت \sqrt{q} $c \in \overbrace{ }^{\wedge}$ بحیث $c = \Gamma$ سم فإن ح تقع :
 - (٩) على الدائرة م (ب) على الوتر ﴿ ب (ح) على الدائرة م (ح) خارج الدائرة م
- (٢) ٢ ح مثلث قائم الزاوية في ب فيه ٢ (٢،٥) ، ب (-٢، -٣) فإن ميل *- ح* يساوى:
 - Y(5) ... (~) ... Y-(f)
- (٣) دائرة مركزها نقطة الأصل ونصف قطرها ٢ وحدة فأي من النقط الآتية تنتمي للدائرة ؟ $(1, \overline{Y})(5) (1, \overline{Y})(2) (1, Y-)(4) (Y, Y)(1)$
- (٤) في الشكل المقابل: الشكل المعابل: $\stackrel{\cdot}{\leftarrow}$ مماس للدائرة م عند $\stackrel{\cdot}{\leftarrow}$ $\stackrel{\cdot}{\circ}$ $\stackrel{\cdot}{\circ}$ $\stackrel{\cdot}{\circ}$ $\stackrel{\cdot}{\circ}$ $\stackrel{\cdot}{\circ}$ $\stackrel{\cdot}{\circ}$ =(فإن $m{arphi}(oldsymbol{arphi})$ فإن $m{arphi}(oldsymbol{arphi})$ فإن $m{arphi}(oldsymbol{arphi})$ ثار، $m{arphi}(oldsymbol{arphi})$ ثار، $m{arphi}(oldsymbol{arphi})$ ثار، $m{arphi}(oldsymbol{arphi})$ ثار، $m{arphi}(oldsymbol{arphi})$
 - (٥) في الشكل المقابل:

 Δ م - ح مرسوم داخل الدائرة م ، م - \perp م - Δ $\overline{ }$ م ص \perp احد ، م س = م ص ، $\psi(ra{ })$ $=(\smile)$ فإن $\mathfrak{G}($

(٦) إذا كانت | (7) | (7) | (7) | (7) | (7) | (7) | (7) | (7) | (7) | (7) | (7) | (7) | (7) | (7) | (7) | (7) | (7) | (7) | (8) | (8) | (9) | (9) | (9) | (9) | (9) | (9) | (9) | (9) | (9) | (10) |

السؤال الثالث:

- (۱) إذا كان (۱: ك س ٤ ص ٣ = ۰ ، (۲: ٦ س + ص + ٥ = ۰ أوجدى K التي تجعل : (i) (۱) (۲ لـ ۲۶ (ii) (۱) (۲ / ۲۶
- () بفرض أن + + سم . ارسم دائرة تمر بالنقطتين ، وطول نصف قطرها + 0.7 سم كم عدد الحلول الممكنة + 0.4 سم كم عدد الحلول الممكنة + 0.4 سم

السؤال الرابع:

فى الشكل المقابل:

 $\overline{q} - \overline{q} = \overline{q}$ $\overline{q} - \overline{q} = \overline{q}$ $\overline{q} - \overline{q}$

السؤال الخامس:

هم ل مه متوازی أضلاع حیث هـ (- ۳ ، ۰) ، $\gamma \in \text{Loc}(N)$ السینات ، $\gamma \in \text{Loc}(N)$. $\gamma \in \text{Loc}(N)$.

الاختيار الخامس عشر

أجب عن جميع الأسئلة الآتية

السؤال الأول: أكمل ما يأتي

- (١) المستقيم العمودي على قطر الدائرة من إحدى نهايتيه يكون للدائرة
- (٢) مستقيماًن متوازيان البعد بينهما ١٦ سم ، فإن طول قطر الدائرة التي تمس كلا من المستقيمين = سم
 - (۳) إذا كان المستقيم المار بالنقطتين (۲، ۰)، (۰، ۳) و المستقيم $\omega = 0 0$ منعامدان فإن 0 0 تساوى
- (٤) إذا كان م ب قطر في دائرة حيث ٩ (٣٠ ، ٣٠) ، ب (١ ، ٥) ، فإن إحداثي مركز الدائرة هو (.... ،)

(٥) إذا كان طول $\frac{1}{9} = 0$ وحدات حيث $\frac{1}{9} (7, 0)$ ، $\frac{1}{9} (0, 0)$ ، ك $\frac{1}{9} < 0$ فإن ك $\frac{1}{9} = 0$

(٦) في الشكل المقابل:

مستطيل مقسم إلى ثلاثة مربعات مساحة كل منها ٤ سم . فإن محيط المستطيل = سم

السؤال الثاني: اختر الإجابة الصحية من بين الإجابات المعطاة

- (١) في الدائرة الواحدة الأوتار التي على أبعاد متساوية من المركز تكون: (١) متعامدة (٦) متقاطعة (ح) متساوية الطول (٥) متوازية
- (٢) عدد الدوائر التي يمكن أن تمر برءوس المثلث ٩ ح تساوى : (ح) ۲ (ح) ۳ عدد لا نهائی
- (٣) دائرتان م ، ن طو Y نصفی قطریهما Y سم ، ه سم فإذا کان Y سم ، فإن الدائريتان تكونان:

(۱) متباعدتان (۱) متقاطعتان (۱) متماستان من الداخل (۶) متماستان من الخارج

(٤) في الشكل المقابل: إذا كان $\overline{9}$ مماس للدائرة م عند $\overline{9}$ ، ب $\overline{9}$ م ح $\mathcal{O}(\angle - \mathbf{c}) = \mathbf{r}^{\circ}$, $\dot{\mathbf{e}}_{\mathbf{j}}$ $\dot{\mathbf{v}}(\angle - \mathbf{c})$ $\dot{\mathbf{v}}(\angle - \mathbf{c})$ $\dot{\mathbf{v}}(\mathbf{c})$: (1) \mathbf{r}° (2) \mathbf{r}°

: $\stackrel{\longleftrightarrow}{=} 1$ $\stackrel{$

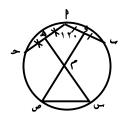
 $\frac{3}{2}$ (5) $\frac{2}{3}$ (\sim) $\frac{2-}{3}$ (\sim) $\frac{3-}{2}$ (†)

م ، م دائرتان طولا نصفی قطریهما ٤ سم ، ه سم وكان سطح الدائرة م \cap سطح الدائرة $\omega = \{ \{ \} \}$ ، فإن $\gamma \omega$ تساوى : (۱) ۱ سم (۱) ع سم (ح) مسم (ع) ۹ سم

السؤال الثالث:

- (٩) أوجد معادلة الخط المستقيم المار بالنقطة (٣ ، ٢) وعمودي على المستقيم ٤ س + ص - ٧ = ٠

(ب) في الشكل المقابل:


م س ، ب ص مماسان للدائرة م عند م ، ب . — مر فيها ، م ∈ س ص . A ب قطر فيها

أو لا: أثبت أن ١ س = ب ص

ثانيا: أوجد صورة النقطة ص بدوران مركزه م وقياس زاويته ١٨٠٠.

السؤال الرابع:

السؤال الخامس:

(٩) في الشكل المقابل:

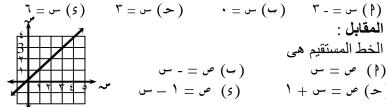
 \overline{q} ، \overline{q} و تران فی دائرة م حیث $\underline{\sigma}$ ، $\underline{\sigma}$ ، $\underline{\sigma}$ ، $\underline{\sigma}$ ، $\underline{\sigma}$ ، $\underline{\sigma}$ ،

ه منتصف $\overline{\Lambda}$ أثبت أن Λ Λ م م متساوى الأضلاع .

ألاختيار إلسادس عشير

أجب عن جميع الأسئلة الآتية:

السؤال الأول : أكمل ما يأتي

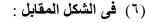

- (١) الأوتار المتساوية في الدائرة تكون
- (٢) خط المركزين لدائرتين متقاطعتين عمودي على الوتر المشترك و
- (٣) م ، م دائرتان طولا نصفى قطريهما ٤ سم ، ٦ سم ، والبعد بين مركزيهما ٢ سم فإن الدائرتين تكونان
 - (٤) مساحة الدائرة التي طول نصف قطرها ٧ سم = سم
- (٦) ميل المستقيم الموازى للمستقيم: $\omega = 7 \omega + 7$ يساوى، وميل المستقيم العمودى عليه يساوى

السؤال الثانى : اختر الإجابة الصحية من بين الإجابات المعطاة

(۱) المستقیم ل ∩ الدائرة م :
 (۱) {ح ، ه}

(٢) ميل المستقيم الذي يمر بالنقطتين (٠٠،٠) ، (٣،٠) يساوي – ٢ عندما :

(٣) في الشكل المقابل:


معادلة الخط المستقيم هي

(٤) في الشكل المقابل:

إذاً كان ٢م = ٥ سم ، حرء = ٢ سم ، فإن ١ ح = (۹) ۲ سم (ح) ٤ سم (۶) ٥ سم

(٥) إذا كانت نُقطَة ه تقع داخُل الدائرة م فأن :

= (4 1/2)

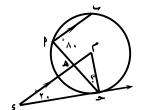
السؤال الثالث:

- أوجد قيمة م إذا كان : (i) ﴿ رَا ﴿ ﴿ ﴿ (ii) ﴿ رَا ﴿ ﴿ ﴿ ﴿ ﴿ ﴿ ﴿ ﴿ ﴿ اللَّهُ مُا لِمُ اللَّهُ مُا لِمُ اللَّهُ ا
 - (ب) أوجد معادلة الخط المستقيم المار بالنقطة (٣ ، ٣) وميله ٢

السؤال الرابع:

- (٩) أثبت أن المثلث الذي رؤوسه النقط (٣ ، ١٠) ، ب (٨ ، ٥) ، ح (٥ ، ٢) قائم الزاوية ، ثم أوجد مساحته .
 - () باستخدام الأدوات الهندسية ارسم المستقيم $b : A \in \mathcal{D}$ ، ارسم دائرة مركز ها م حيث م ∈ ل ، طول نصف قطر ها ٢ سم وتمر بنقطة ٩ . كم عدد الدوائر التي یمکن ر سمها ؟ (لا تمح الأقواس)

السؤال الخامس :



(٩) في الشكل المقابل: $\overline{}$ س ، ص منتصفات $\overline{}$ ، ح و

 $(\angle \emptyset - \emptyset) = \emptyset$ ($(\angle \emptyset - \emptyset) = \emptyset$

(ب) في الشكل المقابل:

وح مماس للدائرة م عند ح، · * Y · = (> 5 r \ \) ひ أوجد: ٥ (١١٥ حم)

الاختبار السابع عشر

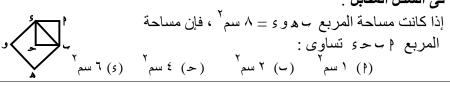
أجب عن جميع الأسئلة الآتية :

السؤال الأول: أكمل ما يأتي

- (١) المستقيم المار بمركز الدائرة عموديا على أي وتر فيها
- (٢) في الدائرة الواحدة إذا كانت الأوتار على أبعاد متساوية من المركز فإنها
- (٣) دائرة م طول قطرها ١٠ سم ، ٢ نقطة في المستوى بحيث كان م٢ = ١٠ سم ، فإن ٩ الدائرة .
 - (٤) نصف قطر الدائرة التي مركزها (٧،٤) وتمر بالنقطة (٣،١) يساوي
 - متوازیان فإن A تساوی

(٦) في الشكل المقابل: إذا كان ٢ - مماسا للدائرة م ، $^{\circ}$ = (ح م $_{\sim}$) فإن $_{\sim}$ (ح م $_{\sim}$) فإن $_{\sim}$

السؤال الثاني: اختر الإجابة الصحية من بين الإجابات المطاة


- (۱) إذا كان م (- ۱ ، ٥) ، ب (٥ ، ٣) فإن نقطة منتصف م ب هي : (1-, Y-) (5) (1, Y) (\sim) (Y-, Y-) (\sim) (Y, Y) (P)
 - (۲) إذا كانت الدائرتان م ، 0 متقاطعتان في 0 ، 0 ، فإن محور تماثل 0 هو :
- (٩) متباعدتان (٠) متقاطعتان (ح) متماستأن من الداخل (٤) متماستان من الخارج
 - (٤) النقط (۱ ، ۰) ، (۰ ، ۱) ، (٤)
 - (أ) تقع على استقامة واحدة (ب) ليست على استقامة واحدة (ح) تكون مثلث قائم الزاوية (5) تكون مثلث منفرج الزاوية

(°) إذا كانت الدائرتان م ، م متماستان من الداخل وطول نصفى قطريهما ٦ سم ، ٤ سم فإن طول م مه يساوى :

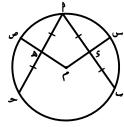
(۹) ۲ سم (ب) ٤ سم (ح) ٦ سم (۶) ۱۰ سم

(٦) في الشكل المقابل:

السؤال الثالث:

(4) [ذا کان (7: % س + % س – % = % ، (7: % س – % س – % س – % او جد قیمه % [ذا کان : (i) (7) % (ii) (1) % (ii) % [1) % [10] % [11] % [12] % [12] % [13] % [14] % [15] % [15] % [16] % [17] % [18] % [18] % [18] % [19] % [19] % [19] % [10

السؤال الرابع:


على مستوى إحداثي متعامد مثل كلا من النقط A ($^{\circ}$, $^{\circ}$) ، $_{\circ}$ ($^{-1}$, $^{\circ}$) ، $_{\circ}$ رارسم $_{\circ}$ م $_{\circ}$ م اثبت أنه متساوى الساقين . أوجد $_{\circ}$ منتصف $_{\circ}$ ، ثم اثبت أن $_{\circ}$ ح $_{\circ}$ $_{\circ}$.

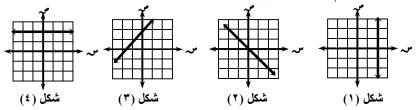
السؤال الخامس:

فی الدائرة م . و ، ه منتصفی $\frac{1}{9}$ ، $\frac{1}{9}$ علی الترتیب $\frac{1}{9}$: أثبت أن $\frac{1}{9}$ و $\frac{1}{9}$ ه $\frac{1}{9}$ الترتیب $\frac{1}{9}$ التر تیب $\frac{1}{9}$ التر تیب

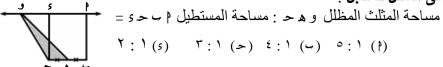
 $(P \subseteq \mathcal{V}(A))$

الاختيار القامن عشر

أجب عن جهيع الأسئلة الآتية :


السؤال الأول: أكمل ما يأتي

- (١) خط المركزين لدائرتين متقاطعتين يكون عموديا على
- (٢) الأوتار المتساوية في الطول في الدائرة الواحدة تكون على
- (٣) معين طولا قطريه ٦ سم ، ٨ سم فإن طول ضلعه يساوى
- (٤) إذا كان المستقيم ٢ س + ٩ ص + ٦ = يمر بالنقطة (- ١ ، ٢) فإن ٩ تساوى
- (..., ...) = اذا کانت ح منتصف $\frac{1}{2}$ حیث $\frac{1}{2}$ (۲، -۳)، $\frac{1}{2}$ (۵) اذا کانت ح منتصف



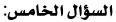
السؤال الثاني: اختر الإجابة الصحية من بين الإجابات المعطاة

- ا سم Λ (۲) سم Λ سم Λ سم Λ سم Λ سم Λ
 - (٢) دائرتان طولا نصفى قطريهما ٣ سم ، ٥ سم والبعد بين مركزيهما ٢ سم ، فإن الدائرتين تكونان :
- (٩) متقاطعتان (٦) متباعدتان (ح) متماستان من الخارج (٤) متماستان من الداخل
 - (٣) الخط المستقيم الذي ميله موجب يمثله الشكل:

- (٤) إذا كان $\sqrt{500} \pm \sqrt{600} = (-1, 1)$ ، و = (0, 0, 0) فإن ميل $\sqrt{500} = (0, 0, 0)$ يساوى
 - Υ (5) $\frac{1}{2}$ (\Rightarrow) $\frac{1}{2}$ -(\neg) Υ -(\uparrow)
 - (٥) في الشكل المقابل:



(٦) معادلة المستقيم الذي ميله يساوي - ١ ويمر بنقطة الأصل هو:


 $- = \omega$ (5) $\omega = \omega$ (ω) $\omega = \omega$ (ω) $\omega = \omega$ (ω)

السؤال الثالث:

- (٩) أو جد معادلة الخط المستقيم المار بالنقطة (٣ ، ٤) و عمو دى على المستقيم ٢ س + ٥ ص 9 = 0
- (ب) في الشكل المقابل: $q \mapsto q$ مماس للدائرة عند $q \mapsto q$ في الدائرة $q \mapsto q$ في الدائرة $q \mapsto q$ فإذا كان $q \in q$ و $q \mapsto q$ أوجد $q \in q$

- (A) إذا كان البعد بين النقطتين (A ، V) ، (T ، T) يساوى ٥ فأوجد قيمة A .
 - (ب) إذا كان ١٩ (٢ ، ٠) ، ب (١ ، ١) ، ح (س ، ٥) ثلاث نقط تقع على مستقيم واحد فأوجد قيمة س .

. d = d = 0 أثبت أن

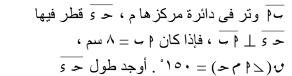
(-) $1 - \sqrt{1 - 1}$ فيه $1 - \sqrt{1 - 1}$ سم ، $1 - \sqrt{1 - 1}$ سم . أرسم الدائرة المرزة بر ءوس المثلث $1 - \sqrt{1 - 1}$ لهذه المسألة ؟

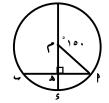
الاختبار الناسع عشر

أجب عن جميع الأسئلة الآتية :

السؤال الأول: أكمل ما يأتي

- (۱) خط المركزين لدائرتين متماستين يمر بنقطة
- ر۲) إذا كان سطح الدائرة م \bigcap سطح الدائرة $\omega = \emptyset$ فإن الدائرتين م ، ω تكونان
 - (٣) إذا كان مجموع قياسى زاويتين فى مثلث $\frac{5}{6}$ مجموع قياسات زواياه ، فإن قياس الزاوية الثالثة تساوى $^{\circ}$

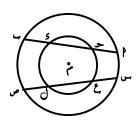

- (٥) مساحة المثلث المحدد بمحورى السينات و الصادات و المستقيم 7 0 + 7 = 0تساوي
 - (٦) قياس الزاوية المحصورة بين المستقيم المار بالنقطتين (٠،١)، (١،٠) و الاتجاه الموجب لمحور السينات تساوي°


السؤال الثاني: اختر الإجابة الصحية من بين الإجابات المعطاة

- (١) إذا كانت م دائرة طول قطرها ١٠ سم ، ٩ نقطة على الدائرة فإن م ٩ بساوى : (۱۰ صفر سم (۱۰ (ح) ۲ سم (۱۰ سم (۱۰ سم
 - (٢) دائرتان م، م طولا نصفى قطريهما ٧ سم، ٣ سم، تكونان متماستان من الخارج إذا كان م م يساوى:
- (ع) ٢٠ سم (ع) ٤ سم (ع) ٢٠ سم (ع) ٤ سم (ع) ٢٠ سم (ع) ٤ سم (ع) ٤ سم (ع) ٤ دائرة م طول نصف قطرها ٥ سم، ل مستقيم، فإذا كان طول العمود المرسوم من م على ل يساوي ٥ سم ، فإن المستقيم ل يكون :
- (٩) خارج الدائرة (١) مماس للدائرة (ح) قاطع للدائرة (٥) يمر بمركز الدائرة
 - (٤) معادلة المستقيم الذي يمر بالنقطة (- " " " " " " " " " " " " " " ويوازى محور الصادات هو :
 - - (٥) البعد بين النقطتين (٦ ، ٠) ، (٠ ، ٨) يساوى :
 - 12 (5)
- (٦) إذا كان ١ (١٠،١)، ب (١، ٩)، ح منتصف ١ ب فإن إحداثي حيساوي (1-i1)(5)(1-i1-)(5)(7-i1)(7-

السؤال الثالث:

- (٩) أوجد معادلة المستقيم المار بالنقطتين (٢ ، ٣) ، (٤ ، ١) ، وإذا كان المستقيم يمر بالنقطة (A ، °) ، أوجد قيمة A .
 - (ب) في الشكل المقابل:

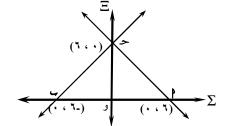


السؤال الرابع:

في مستوى إحداثي متعامد مثل النقط ١ (٥، ٣) ، ب (٦، - ٢) ، ح(١، - ١) ، ٥(٠، ٤) ثم أثبت أن هذه النقاط رءوس معين ، وأوجد مساحته .

السؤال الخامس:

- (۹) باستخدام الأدوات الهندسية ارسم المثلث q - 1 الذي فيه v 1 = 0° $\mathfrak{G}(\angle - \mathbf{z}) = \mathbf{r}^{\circ}$ ، $\mathbf{r} = \mathbf{z} = \mathbf{0}$ سم ، ثم ارسم الدائرة المارة برءوس المثلث $\mathbf{q} = \mathbf{r}$
 - () في الشكل المقابل:


رسمت دائرتان متحدتا المركز م، الدائرة الصغرى في ح، ٤. س ص وتر في الدائرة الكبرى ويقطع الدائرة الصغرى في ع ، ل . فإذا كان م ب = سص فاثبت أن حو = عل.

الاختتار العشرون

أجب عن جميع الأسئلة الآتية :

السؤال الأول: أكمل ما يأتي

- (١) المماس للدائرة يكون عموديا على
- (۲) خط المركزين لدائرتين متقاطعتين يكون عموديا على
- - (٤) في الشكل المرسوم:

(· , ٦-) - , (· , ٦) A ، ح (۲،۰) فإن:

- (۹) میل المستقیم ح =
- (-) معادلة المستقيم ١ ح هو:
- (ح) مساحة سطح المثلث A بح تساوى

السؤال الثاني: اختر الإجابة الصحية من بين الإجابات المعطاة

- (١) عدد محاور التماثل لنصف الدائرة يساوى:
- (٥) عدد لا نهائي
- (ع) صفر (ع) (ع) (ح) (ع) (ع) (ع) (ع) (ع) عدد الدوائر التي تمر بثلاث نقط ليست على استقامة واحدة تساوى :
- (٩) واحدة (١٠) اثنان (ح) ثلاث (٥) عدد لا نهائي

(۳) اذا کان $\frac{1}{\sqrt{2}}$ این میل $\frac{1}{\sqrt{2}}$ این میل $\frac{1}{\sqrt{2}}$ یساوی :

$$\frac{5}{2}$$
 (s) $\frac{2}{5}$ (\Rightarrow) $\frac{2}{5}$ - (\hookrightarrow) $\frac{5}{2}$ - (\uparrow)

(٤) إذا كان $\overline{\Box}$ $\overline{\Box}$ \pm $\overline{\Box}$ \pm \pm \pm \pm \pm \pm الحال \pm \pm الحال \pm \pm الحال \pm الحال

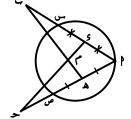
$$\Upsilon$$
 (5) $\frac{1}{2}$ (\Rightarrow) $\frac{1}{2}$ - (\forall) Υ - (\dagger)

- (٥) إذا كان م دائرة طول نصف قطرها ٣ سم ، المستقيم ل يبعد عن مركزها ٥ سم فإن المستقيم ل:
- (٩) يمسها (١) يقطعها في نقطتين (ح) يقع خارجها (٤) يمر بمركزها
- (٦) شبه منحرف طولا قاعدتيه المتوازيتين ١٦ سم ، ٢٠ سم ومساحة سطحه ١٨٠ سم ً (۹) ١٠ سم (٦) ١٠ سم (٥) ٥ سم السؤال الثالث:

ا ۱۰ سم
$$(-)$$
 ۱۰ سم $(-)$ ۱۰ سم $(-)$ ۱۰ سم

- (4) إذا كانت A (-0, 7) ، -(7, 7) ، -(9, 1) وكانت 4 = -فأوجد قبمة س
- (ب) باستخدام الأدوات الهندسية ارسم $\frac{1}{1}$ حيث $\frac{1}{1}$ سم ، ثم ارسم دائرة تمر بالنقطتين ٩ ، ب بحيث يكون طول نصف قطرها ٥ سم . ما عدد الطرق الممكنة ؟

السؤال الرابع:


- (٩) أثبت أن المثلث ٩ ح قائم الزاوية في حيث ٩ (٥، ٢) ، (٢، ٢) ، ح (- ۲ ، ۱) ثم أحسب مساحة سطحه
- (ب) أوجد معادلة الخط المستقيم الذي يقطع من الجزأين الموجبين لمحوري الإحداثيات السيني والصادي جز أين طولهما ٣، ٥ على الترتيب.

السؤال الخامس:

في الشكل المقابل:

م س ، م ص وتران في الدائرة م ، و منتصف م س ،

 $\{-\}$ = $\{-\}$ $\{-$

